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Based on the notes by Iain Gordon, Sections 1.7 - 1.8 & 2.1 - 2.2

1 Linear Mappings
1.1 The Morphisms

• What is a homomorphism?

– let V,W be vector spaces
– let v1, v2 ∈ V and λ ∈ F
– a homomorphism of F - vector spaces is mapping of the form:

f : V → W

such that:
f(v1 + v2) = f(v2) + f(v2)

f(λv1) = λf(v1)

– this is also known as a linear mapping (or a F-linear mapping)

• What is an isomorphism?

– a bijective homomorphism

• What are isomorphic vector spaces?

– vector spaces for which an isomorphism exists between the two

• What is an endomorphism?

– a homomorphism from a vector space to itself

• What is an automorphism?

– an isomorphism from a vector space to itself

• What is a fixed point of a mapping?

– given a mapping f : X → X, a fixed point of f is a point x ∈ X sent to itself under f

– the set of all fixed points is:
Xf = {x|x ∈ X, f(x) = x}

1.1.1 Examples

• projections are linear mappings:
pri : (λ1, λ2, . . . , λn) → λi

• squaring (λ → λ2) is not linear (except for F = Z2)

• projection mappings:
(V ⊕W ) → W (V ⊕W ) → V

are linear

• the canonical injections:
v → (v, 0) w → (0, w)

are linear
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• the bijective map defining a linear combination of basis elements:

(λ1, λ2, . . . , λn) →
n∑

i=1

λivi

is linear

• the automorphisms of a vector space V form a subgroup of its permutation group (known as general
linear group or automorphism group of V )

1.1.2 Exercises (TODO)

1. Show that a composition of homomorphisms is a homomorphism.

Define homomorphisms f : V → W and f : U → V . Consider the composition f ◦ g : U → W .

Consider λu1 + u2. Then:

(f ◦ g)(λu1 + u2)

=f(g(λu1 + u2))

=f(g(λu1) + g(u2))

=f(g(λu1)) + f(g(u2))

=f(λg(u1)) + f(g(u2))

=λ(f ◦ g)(u1) + (f ◦ g)(u2)

2. Show that if f : V → W is an isomorphism, then f−1 : W → V is also an isomorphism

We know that since f is an isomorphism, it is a bijection, so its inverse f−1 exists. We want to show
that:

f−1(λw1 + w2) = λf−1(w1) + f−1(w2)

We know that:
λw1 + w2 = f(f−1(λw1 + w2))

Moreover,
f(λf−1(w1) + f−1(w2)) = λf(f−1(w1)) + f(f−1(w2)) = λw1 + w2

In other words:

f(λf−1(w1 + w2)) = f(λf−1(w1) + f−1(w2)) =⇒ f−1(λw1 + w2) = λf−1(w1) + f−1(w2)

3. Show that the image of a vector subspace under a homomorphism is again a vector sub-
space. Moreover, show that the preimage of a vector susbspace under a homomorphism is
a vector subspace.

4. Consider a vector space V , with the set of its endomorphisms End(V ). Show that V f ⊆ V
is a vector subspace.
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5. Show that, given vector spaces V1, V2, . . . , Vn,W and homomorphisms fi : Vi → W , we can
define a new homomorphism:

f : V1 ⊕ V2 ⊕ . . .⊕ Vn → W

via:

f(v1, v2, . . . , vn) =

n∑
i=1

fi(vi)

Given the above, we can define a bijection:

Hom(V1,W )× . . .×Hom(V1,W ) → Hom(V1 ⊕ . . .⊕ Vn,W )

6. Show that, given vector spaces W1,W2, . . . ,Wn, V and homomorphisms gi : V → Wi, we can
define a new homomorphism:

g : V → W1 ⊕W2 ⊕ . . .⊕Wn

via:
g(v) = (g1(v), . . . , gn(v))

Given the above, we can define a bijection:

Hom(V,W1)× . . .×Hom(V,Wn) → Hom(V,W1 ⊕ . . .⊕Wn)

7. Let X = R2 be a vector space over F = R. Determine the fixed point set of the following
functions:
(a) f(a, b) → (a, b)

For this, Xf = X.
(b) f(a, b) → (b, a)

For this, the fixed point set is defined by all points for which a = b, so:

Xf = {(a, a)|a ∈ F}

Notice, in this case, Xf is the diagonal line through the origin, and f is a function which reflects
points in X about Xf .

(c) f(a, b) → (−b, a)

Notice, if a = −b and b = a, this implies that a = −a = b = −b. In particular, we must then have:

Xf = (0, 0)

Notice, Xf is the origin, and f defines a 90º anticlockwise rotation.

8. How many vector subspaces are there in R2 that are sent to themselves under the reflection
(x, y) → (x,−y)? Which vector subspaces in R3 are sent to themselves by the reflection
(x, y, z) → (x, y,−z)?

1.2 Complementary Subspaces
• What is a complementary subspace?

– consider a vector space V with subspaces V1, V2

– V1 and V2 are complementary subspaces if we can define a bijection:

f : V1 × V2 → V

via:
f(v1, v2) = v1 + v2
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1.2.1 Examples

• consider V = R2 defined over F = R. Then the subspaces:

V1 = 〈1, 0〉 = {(µ, 0)|µ ∈ F}

V2 = 〈b, c〉 = {(λb, λc)|λ ∈ F}
are complementary. We can see if the addition mapping:

((µ, 0), (λb, λc)) → (µ+ λb, λc)

Notice, if c = 0, this won’t be bijective (since (µ + λb, λc) can be generated using many different
combinations of µ, λb). Hence, V1 and V2 won’t be complementary subspaces (in fact, we would have
that V1 = V2 - they are the same line).

If c 6= 0, then for any point (x, y), we can find unique λ satisfying λc = y, and unique µ such that
µ+ λb = x. In other words, V1 and V2 are complementary when c 6= 0 (in other words, when the lines
aren’t parallel).

1.2.2 Exercises

1. Show that the bijection defining complementary subspaces is an isomorphism:

f : V1 ⊕ V2 → V

Here V1 ⊕ V2 is an internal direct sum (not to be confused with external direct sum: the
IDS refers to an operation on subspaces, whilst the EDS is more generally applicable to
vector spaces).

1.3 Theorem: Classification of Vector Spaces by their Dimension

Let n ∈ N. A vector space over a field F is isomorphic to Fn if and
only if it has dimension n.
In other words, for finite dimensional vector spaces, up to isomorphism,
all that “matters” is its dimension. [Theorem 1.7.7]

Let V be vector spaces over F.

1. (⇐=): say V has dimension n. Then, it has a basis:

E = {a1, . . . , an}

We know that, for basis elements, the following is a bijective map (Theorem 1.5.11):

f : Fn → V

given by:

(α1, . . . , αn) →
n∑

i=1

αiai

Moreover, this is a linear map, so in particular, it defines an isomorphism, as required.
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2. (=⇒): assume there exists an isomorphism:

f : Fn → V

We know that Fn has a basis of n elements:

E = {e1, . . . , en}

Notice, since f is a bijection, it suffices to show that f(E) is a basis for V , since then V will have a
basis of n elements, as required. Hence, we need to show that f(E) is:

• a generating set for V : pick v ∈ V . Since f is a bijection, ∃!x ∈ Fn such that f(x) = v. Moreover,
we can write x in terms of the basis elements of Fn:

x =

n∑
i=1

αiei

Hence, using the linearity of the homomorphism:

f(x) = v =⇒
n∑

i=1

αif(ei) = v

In other words, the set f(E) is generating.
• linearly independent: since E is a basis, it is linearly independent, so:

n∑
i=1

αiei = 0

only if αi = 0,∀i ∈ [1, n]. But then, applying f means that:
n∑

i=1

αif(ei) = f(0) = 0

In other words, the elements of f(E) are also linearly independent.

Hence, f(E) is a basis for V . Moreover, it contains n elements, so dimV = n, as required.

1.4 Lemma: Linear Mappings and Bases

Define the set of all homomorphisms between vector spaces V,W as:

HomF(V,W ) ⊆ Maps(V,W )

Let B be a basis for V . We can define a bijection:

HomF(V,W ) → Maps(B,W )

via:
f → fB

where fB is f , with its domain restricted to B.
This means that any homomorphism can be defined by the values it takes
at a basis. [Lemma 1.7.8]
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Proof. Let Φ define the bijection.

Recall, Φ is injective if:
Φ(f) = Φ(g) =⇒ f = g

Let f, g be linear mappings f, g : V → W . If ∀v ∈ B we have:

f(v) = g(v)

then we must have that, ∀λi ∈ F, vi ∈ B:
n∑

i=1

λif(vi) =

n∑
i=1

λig(vi)

Since f, g are homomorphisms, then:

f

(
n∑

i=1

λivi

)
= g

(
n∑

i=1

λivi

)

In other words, if f and g are equal for each element in the basis B, then they must be equal for any element
in V . Hence, Φ must be injective.

For surjectivity, we need to ensure that for each element g ∈ Maps(B,W ), we have at least one other
element ḡ ∈ HomF(V,W ), such that:

Φ(g) = ḡ

Indeed, take any g : B → W . We can extend it to a homomorphism of the form ḡ : V → W . Notice, any
element v ∈ V can be written as:

v =

n∑
i=1

λivi

where each vi ∈ B. In other words, the mapping:

ḡ(v) =

n∑
i=1

λig(vi)

is clearly a homomorphism. In other words, we can map any element ḡ ∈ HomF(V,W ) to g ∈ Maps(B,W )
using the above.

1.4.1 Exercises (TODO)

1. Let V,W be vector spaces over a field F. Show that HomF(V,W ) is a vector subspace of the
set of all mappings Maps(V,W ). Moreover, show that its vector space structure is given
similarly to the free vector space. Show that:

dimHomF(V,W ) = (dimV )(dimW )

where I am using the convention 0×∞ = 0

2. Let V be a finite dimensional vector space, and let U be a proper vector subspace. Show that
there exists at least one (and in fact many different) vector subspace(s) of V complementary
to U . If you’re brave, try to do this also for not necessarily finite dimensional vector spaces

Page 8



1.5 Proposition: Left and Right Inverses

1. Every injective homomorphism:

f : V → W

has a left inverse g : W → V such that:

g ◦ f = 1V

2. Every surjective homomorphism:

f : V → W

has a right inverse g : W → V such that:

f ◦ g = 1W

[Proposition 1.7.9]

Proof. • Existence of Left Inverse For Injective Mappings

– we begin by noting that f(V ) is a subspace of W
– in particular, by Exercise 2 above, we can find a subspace U of W which is complementary to

f(V )

∗ in exercise 2 we would require f(V ) to be a proper subspace
∗ if it isn’t, then f(V ) = W , so f would be surjective, and so an isomorphism
∗ isomorphisms are bijective, and so, have a left inverse

– since U and f(V ) are complementary, we know that ∀w ∈ W , we have unique u ∈ U, f(v) ∈ f(V )
such that:

w = u+ f(v)

– moreover, by injectivity of f , f(v) is uniquely produced by v ∈ V

– hence, we can define a mapping g : W → V such that:

g(w) = v, w = u+ f(v)

(Apparently this mapping then shows that g(f(v)) = v, as required)

• Existence of Right Inverse For Surjective Mappings

– we can pick a basis B ⊆ W
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– using the fact that f is surjective, we can define a mapping of sets:

ḡ : B → V

such that:
f(ḡ(b)) = b

(we can think of ḡ as mapping basis elements to enough elements of V such that f can send them
back to the basis elements)

– by (1.4), we know that there exists a bijection between HomF(V,W ) and Maps(B,W ). In par-
ticular, we can find g ∈ HomF(V,W ), such that for b ∈ B, we have g(b) = ḡ(b)

– thus, ∀b ∈ B, we have:
f(g(b)) = b

– notice, if w ∈ W , then we can write:

w =

n∑
i=1

αibi

– but then, using the fact that f, g are homomorphisms:

f(g(w)) = f

(
g

(
n∑

i=1

αibi

))

= f

(
n∑

i=1

αig(bi)

)

=

n∑
i=1

αif(g(bi))

=

n∑
i=1

αibi

= w

– thus, we have found a right inverse, as required

2 The Rank-Nullity Theorem
2.1 Images and Kernels

• What is the image of a homomorphism?

– let f be a homomorphism f : V → W

– the subset f(V ) ⊆ W is the image of f
– we denote it im(f) = f(V )

– im(f) is a subspace of W

• What is the kernel of a homomorphism?

– the preimage of 0 ∈ W

– in other words:
ker(f) = {v | v ∈ V, f(v) = 0}

– ker(f) is a subspace of V
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2.1.1 Examples

• if f(a, b) = (0, 0), then:
ker(f) = R2 im(f) = {(0, 0)}

• if f(a, b) = (b− a, a− b), then:
ker(f) = {(a, a) | a ∈ R}

im(f) = {(c,−c) | c ∈ R}

• if f(a, b) = (−b− a, a− b), then:
ker(f) = {(0, 0)}

(since we require −b− a = 0 = a− b =⇒ a = −a =⇒ a = 0)

im(f) = R2

(since we obtain a system
−b− a = x, x ∈ R

a− b = y, y ∈ R

which has unique solutions:
2a = y − x =⇒ a =

y − x

2

b =
y − x

2
− y =

−y − x

2

)

2.2 Lemma: Injectivity and the Kernel

A homomorphism is injective if and only if its kernel only contains 0.
[Lemma 1.8.2]

Proof. We prove in both directions.

• (=⇒): assume that f is an injective homomorphism. Then, since f(0) = 0, no other element of V will
be mapped to 0 by f , so:

ker(f) = {0}

• (⇐=): assume that ker(f) = {0}. Further, assume that f(v1) = f(v2). Then:

f(v1)− f(v2) = 0

=⇒ f(v1 − v2) = 0 (by linearity of f)
=⇒ v1 − v2 ∈ ker(f)

=⇒ v1 − v2 = 0

=⇒ v1 = v2

Hence, it follows that f is injective.
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2.3 Theorem: Rank-Nullity Theorem
• What is the rank of a homomorphism?

– the dimension of im(f)

• What is the nullity of a homomorphism?

– the dimension of ker(f)

Let f : V → W be a homomorphism. Then:

dimV = dim(ker(f)) + dim(im(f))

[Theorem 1.8.4]

Proof. We begin by noticing that if V is a finitely generated vector space, then:

• since ker(f) is a subspace of V , then dim(ker(f)) ≤ dim(V )

• if E is a generating set of V , then f(E) is a generating set for f(V ) = im(f). Hence, im(f) must also
be finitely generated.

We first note that, if the rank or nullity of f are infinite,we can immediately see that the dimV = ∞ (by
the work above).

We now consider having a finite rank and nullity. Then, we can define the basis of ker(f):

A = {v1, . . . , vr}

and of im(f):
B = {w1, . . . , ws}

Our aim is to show that there exists some basis E of V , such that:

|E| = r + s

To do this, define w̄i ∈ V , such that:
f(w̄i) = wi

We know that such w̄i exist, since wi ∈ im(f) (they are basis vectors of im(f)). We claim that:

E = {v1, . . . , vr, w̄1, . . . , w̄s}

Hence, we need to show that:

• 〈E〉 = V
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– since B is a basis for f(V ), we know that we can find αi ∈ F and v ∈ V such that:

f(v) =

s∑
i=1

αiwi

– now consider:

f

(
v −

s∑
i=1

αiw̄i

)
Applying linearity:

f

(
v −

s∑
i=1

αiw̄i

)
= f(v)−

s∑
i=1

αif(w̄i) = 0

where we have used the fact that f(w̄i) = wi.
– we thus know that:

v −
s∑

i=1

αiw̄i ∈ ker(f)

– then, since A is a basis for ker(f), we can write:

v −
s∑

i=1

αiw̄i =

r∑
i=1

βivi =⇒ v =

r∑
i=1

βivi +

s∑
i=1

αiw̄i

– thus, we have shown that if v ∈ V , it can be generated by E

• E is linearly independent

– assume that we have αi, βi such that:
r∑

i=1

βivi +

s∑
i=1

αiw̄i = 0

– applying f :

f

(
r∑

i=1

βivi +

s∑
i=1

αiw̄i

)
= f(0) =⇒

r∑
i=1

βif(vi) +

s∑
i=1

αiwi = 0

– since vi ∈ A, vi ∈ ker(f), we have that:
r∑

i=1

βif(vi) = 0

– moreover, since wi are part of the basis B, they are linearly independent, so if
∑s

i=1 αiwi = 0,
then αi = 0

– if each of the αi are 0, then we have:
r∑

i=1

βivi = 0

– again, the vi are part of A, so they are linearly independent, and so, βi = 0

– thus, the elements in E are linearly independent

Thus, E is a basis for V , and so:
dimV = |E| = r + s
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2.3.1 Exercises (TODO)

1. Show that two subspaces U,W of a vector space V are complementary if and only if:

• V = U +W

• U ∩W = {0}

Recall, U,W are complementary if and only if the following bijection exists:

φ : (u,w) → u+ w, u ∈ U,w ∈ W

We claim that:

• φ is surjective if and only if U +W = V

• φ is injective if and only if U ∩W = 0

If φ is surjective, then ∀v ∈ V, ∃u ∈ U,w ∈ W such that:

φ(u,w) = u+ w = v

Hence, for any element in v ∈ V , we can find elements in U,W which generate v, so:

U +W = V

Similarly, if U +W = V , then ∀v ∈ V, ∃u ∈ U,w ∈ W such that:

v = u+ w

But then, u+ w is nothing else but φ(u,w), so φ maps to every element in V , and so, φ is surjective.
Now assume that φ is injective. Furthermore, lets assume that U ∩ W 6= {0}. Then, we can find an
element a ∈ U ∩W , with a 6= 0. But then:

φ(a,−a) = a− a = 0

(this is well defined, since a is in both U and W ). Since φ(0, 0) = 0, then clearly φ can’t be injective, a
contradiction. Hence, if φ is injective, then U ∩W = 0.
Now assume that U ∩W = {0}. φ will be injective if φ(u,w) = 0 is only possible when u = w = 0 (since
we know that φ(0, 0) = 0). Consider u,w 6= 0 with φ(u,w) = 0. Then:

u+ w = 0 =⇒ u = −w

This means that u ∈ W and W ∈ U . Hence, u,w ∈ U ∩W . But U ∩W = {0}, so u = w = 0, as required.
Hence, φ is a bijection (and so U,W are complementary) if and only if U ∗W = V and U ∩W = {0}

2. Show that two subspaces U,W of a vector space V are complementary if and only if:

• V = U +W

• dimU + dimW ≤ dimV

3. Show that the kernel of a non-zero linear mapping V → F is a hyperplane, in the sense
that together with another vector, the hyperplane and the vector generate V .

4. Let
φ : V → V

be an endomorphism of a finitely dimensional vector space V . Show that:

ker(φ ◦ φ) = ker(φ)
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if and only if:
V = ker(φ)⊕ im(φ)

We begin by noting that V = ker(φ) ⊕ im(φ) is equivalent to saying that ker(φ) and im(φ) are com-
plementary, and so, by the previous exercise, it is true if and only if:

• V = U +W

• U ∩W = {0}

We proceed with the proof:

• (1 =⇒ 2): assume that
ker(φ ◦ φ) = ker(φ)

– define U = ker(φ) and W = im(φ)

– pick v ∈ U ∩W

– since v ∈ U , we know that φ(v) = 0

– since v ∈ W , we know that ∃v̄ ∈ V such that:

φ(v̄) = v

– now consider:
φ2(v̄) = φ(φ(v̄)) = φ(v) = 0

– in other words, v̄ ∈ ker(φ ◦ φ)
– but by assumption, ker(φ ◦ φ) = ker(φ), so v̄ ∈ ker(φ)

– hence, φ(v̄) = 0

– but since φ(v̄) = v it follows that v = 0

– hence, any element v ∈ U ∩W must be 0, so:

U ∩W = {0}

– by the equivalence outlined at the start, we must then have V = ker(φ)⊕ im(φ)

• (2 =⇒ 1): assume that
V = ker(φ)⊕ im(φ)

– notice, if v ∈ ker(φ), then:
φ ◦ φ(v) = φ(0) = 0

so any element in ker(φ) is also in ker(φ ◦ φ), so:

ker(φ) ⊆ ker(φ ◦ φ)

– pick v ∈ ker(φ ◦ φ). then:
φ2(v) = φ(φ(v)) = 0

In other words, φ(v) ∈ ker(φ)

– notice, φ(v) ∈ ker(φ) = U , but also φ(v) ∈ im(f) = W , so we have that:

φ(v) ∈ U ∩W

– by assumption, we know that V = ker(φ)⊕ im(φ) implies that U ∩W = {0}, so it follows that:

φ(v) = 0

– hence, if v ∈ ker(φ ◦ φ), then also v ∈ ker(φ), so:

ker(φ ◦ φ) ⊆ ker(φ)
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– in other words, if V = ker(φ)⊕ im(φ), then:

ker(φ ◦ φ) = ker(φ)

as required

What this is saying is that, if we have an idempotent endomorphism, we can decompose the vector space
using the kernel and image of the endomorphism.

5. An element f is idempotent if f2 = f . By the previous exercise, the idempotent endo-
morphisms of V correspond uniquely to a decomposition of V into a direct product of
complementary subspaces. Show that:

f → (im(f), ker(f))

leads to a bijection:

{f | f ∈ End(V ), f2 = f} → {(I,K) | (I,K) ∈ P(V )2, I,K ⊆ V, I ⊕K = V }

3 Linear Mappings and Matrices
3.1 Theorem: Assigning Matrices to Linear Mappings

Let F be a field, and let m,n ∈ N.
There exists a bijection between:

• the space of homomorphisms Fm → Fn

• the set of n×m matrices with entries in F

via:
M : HomF(Fm,Fn) → Mat(n×m;F)

M : f → [f ]

We call [f ] the representing matrix of the mapping f .
The columns of [f ] are given by applying f to the standard basis vectors
ei, i ∈ [1,m] of Fm:

[f ] := (f(e1) | . . . | f(em))
[Theorem 2.1.1]

Proof. This uses (1.4), using V = Fm,W = Fn. We see that the homomorphism f is determined by what it
does to the basis elements of V = Fm
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3.1.1 Examples

• the identity matrix is defined by the identity homomorphism given by idFm(ei) = ei:

I = [idFm ] =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


Each column is just the elements of the standard basis ei. Conciseley, Iij = δij , the Kronecker Delta.

• if m ≥ n and f is the homomorphism:

f : (x1, . . . , xm) → (x1, . . . , xn)

(in other words, elements beyond xn are “ignored), the corresponding matrix will be given by:

Aij =

{
δij , j ≤ n

0, j > n

so:

A =


1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...

0 0 . . . 1 0 . . . 0


(since once i, j > n, f maps each ei to the 0 vector)

• if g : (x, y) → (y, x) permutes coordinates in F2, the corresponding matrix is:

[g] =

0 1

1 0


More generally, we can define a permutation matrix by using a permutation π ∈ Sn, such that:

Pπ(ei) = eπ(i)
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• if f is the reflection about the straight line making an agle α with the x-axis:

Then:

[f ] =

cos(2α) sin(2α)

sin(2α) − cos(2α)


This follows from the fact that, if for example e1 = (1, 0), we can think of such a reflection as a rotation
by 2α radians about the origin. Then, the coordinates will just be the coordinates of the circle, after
traversing 2α rad. These can be derived, by using a right angle triangle, with unit hypotenuse, and
angles 2α, π

2 ,
π
2 − 2α Hence:

f(e1) = (cos(2α), sin(2α))

For e2, we just rotate in the oppositve direction, and using an angle of π − 2α:

f(e2) = (cos(π − 2α),− sin(π − 2α)) = (sin(2α),− cos(2α))

3.2 Theorem: Composition of Linear Mappings and Products of Matrices)
• How do we define multiplication of matrices?

– 2 matrices A,B can be multiplied to give a product A ◦B = AB if:

A ∈ Mat(n×m;F)

B ∈ Mat(m× l;F)
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– their product AB ∈ Mat(n× l;F) is given by:

ABik =

m∑
j=1

AijBjl, i ∈ [1, n], k ∈ [1, l]

– in other words Aik is given by taking the dot product of the ith row of A, and the kth column
of B

• Is matrix multiplication a mapping?

– yes, of the form:
Mat(n×m;F)×Mat(m× l;F) → Mat(n× l;F)

via:
(A,B) → AB

Consider the homomorphisms:

g : Fl → Fm

f : Fm → Fn

Then, the representing matrix of f ◦ g is the product of the representing
matrices of f and g. In other words:

[f ◦ g] = [f ] ◦ [g]

[Theorem 2.1.8]

Proof. Lets define the matrices, and the bases of the spaces:

A = [f ], Fm = 〈{ai | i ∈ [1,m]}〉

B = [g], Fl = 〈{bj | j ∈ [1, l]}〉

C = [f ] ◦ [g], Fn = {ck | k ∈ [1, n]}

Then, by how we define the bijection from homomorphisms to vectors, we know that:

f(ai) = A∗i =
n∑

k=1

Akick

g(bj) = B∗j =

m∑
i=1

Bijai

What this is saying is that, for example, for the ith column of [f ] (denoted A∗i), we are taking an element
from the basis of Fm, and mapping it to an element of Fn, by using a linear combination of basis vectors
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of Fn. The “coordinates” of the element in Fn to which we map are precisely the coefficients of this linear
combination, which is given by the matrix entries Aki.

Using this, we can write:

(f ◦ g)(bj) = f

(
m∑
i=1

Bijai

)

=

m∑
i=1

Bijf(ai)

=

m∑
i=1

Bij

n∑
k=1

Akick

=

m∑
i=1

n∑
k=1

(AkiBij)ck

=

n∑
k=1

(
m∑
i=1

AkiBij

)
ck (we can switch the sums, since they are finite)

=

n∑
k=1

Ckjck (by definition of matrix product, Ckj =

m∑
i=1

AkiBij)

Notice, this is just giving the jth column of the matrix C, defined by [f ] ◦ [g], so it follows that:

[f ◦ g] = [f ] ◦ [g]
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3.3 Proposition: Calculating With Matrices

Define the following matrices:

• A,A′ ∈ Mat(n×m;F)

• B,B′ ∈ Mat(m× l;F)

• C ∈ Mat(l × k;F)

• Im, the m×m identity matrix

Then, the following hold for matrix multiplication:

1.
(A+ A′)B = AB + A′B

2.
A(B +B′) = AB + AB′

3.
ImB = B

4.
AIm = A

5.
(AB)C = A(BC)

[Proposition 2.1.9]

Proof. Whilst these can be proven from first principles (i.e using all the summation business), it is more
elegant to use the bijection between homomorphisms and matrices, alongside the fact that [f ◦ g] = [f ] ◦ [g],
and the distributive and associative property of functions.

Let:

• [f ] = A

• [f ′] = A′

• [g] = B

• [g′] = B′

• [h] = C

• [idFm ] = Im

1. [(f + f ′)] ◦ [g] = [(f + f ′) ◦ g] = [f ◦ g + f ′ ◦ g] = [f ◦ g] + [f ′ ◦ g]
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2. use similar logic as above

3. [idFm ] ◦ [g] = [idFm ◦ g] = [g]

4. use similar logic as above

5. ([f ] ◦ [g]) ◦ [h] = [f ◦ g] ◦ [h] = [(f ◦ g) ◦ h] = [f ◦ (g ◦ h)] = f ◦ [g ◦ h] = f ◦ ([g] ◦ [h])

3.4 Remark: Assigning Linear Mappings to Matrices

Above we discussed how the mapping:

M : HomF(Fm,Fn) → Mat(n×m;F)

produces a representing matrix from a homomorphism.
We can easily define the inverse transformation, by thinking of applying a
matrix A ∈ Mat(n×m;F) to an element of Fm, and producing an element
of Fn:

(A◦) : Fm → Fn

Indeed, this is our old intuition of “multiplying a vector by a matrix”:

Ax = b, x ∈ Fm, b ∈ Fn

(here we are taking liberty, since technically for this to be applicable we
should use Mat(m× 1;F) instead of Fm, and Mat(n× 1;F instead of Fn).
This then allows us to define the inverse of M :

M−1 : Mat(n×m;F) → HomF(Fm,Fn)

via:
A → (A◦)

In other words, to each matrix, we associate a linear map. [Remark
2.1.10]

3.4.1 Exercises (TODO)

1. Let f : R2 → R2 be the reflection:
(x, y) → (x,−y)

Show that:
{g | g ∈ HomR(R2,R2), f ◦ g = g ◦ f}

is a subspace of HomR(R2,R2), and give a basis of this subspace.

2. Define the transpose of a matrix via:

(AT )ij = Aji

Show that:

• (AT )T = A

• (AB)T = BTAT
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4 Properties of Matrices
4.1 Invertibility of a Matrix

• When is a matrix invertible?

– when it has both a left and right inverse
– in other words, A is invertible if and only if ∃B,C such that:

AB = CA = I

– notice, a matrix may have a left or a right inverse, but said matrix won’t be invertible. For
example: (

1 0
)1

0

 = I

but
(
1 0

)
doesn’t have a left inverse, so it isn’t invertible

• How does the isomorphism defining the matrix define its invertibility?

– consider a matrix A, defined as a homomorphism:

a : Fn → Fm

– by (3.2), we can “translate” the requirements for matrix invertibility to be in terms of function
composition

– hence, A is invertible if and only if we can find b, c such that:

a ◦ b = idFk , b : Fk → Fn

c ◦ a = idFn , c : Fm → F l

– notice, the identity function is an isomorphism, so a ◦ b and c ◦ a must be isomorphisms. Hence:
∗ Fm is isomorphic to Fk, and since vector spaces are characterised by their dimension [(1.3)],

we must have m = k

∗ Fn is isomorphic to Fl, and since vector spaces are characterised by their dimension [(1.3)],
we must have n = l

– notice that since the compositions are isomorphism, we must then again have that n = m, so in
particular, if A is invertible, n = m - A must be a square matrix

• Are all matrices invertible?

– only square matrices are invertible
– this is summarised by the following set of equivalences:

1. There exists a square matrix B such that:

BA = I

2. There exists a square matrix C such that:

AC = I

3. The square matrix A is invertible
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Proof. To show equivalence, we show that 3 implies 1 and 2, and that 1 and 2 each imply 3.

∗
(

3 =⇒ 1 , 2
)

: this is from the definition of matrix invertibility

∗
(

1 =⇒ 3
)

: lets assume that A has a left inverse. Then, it must be the case that a

(where a : Fn → Fn) has a left inverse under function composition, so a is injective. Then,
ker(a) = {0}, so by rank nullity theorem:

dim(Fn) = dim(im(a))

Since im(a) is a vector subspace of Fn, it follows by Remark 1.6.9 that im(a) = Fn, so in
particular a is surjective. Hence, a must be an isomorphism, so A must be invertible.

∗
(

2 =⇒ 3
)

: lets assume that A has a right inverse. Then, it must be the case that a

(where a : Fn → Fn) has a right inverse under function composition, so a is surjective. By
rank nullity theorem:

dim(Fn) = dim(im(a)) + dim(ker(a))

Since dim(im(a)) = dim(Fn), we must have that dim(ker(a)) = 0, so it follows that a is also
injective. Hence, a must be an isomorphism, so A must be invertible.

• How do we denote the inverse matrix?

– if a−1 is the inverse of the mapping a defining a matrix A, we can denote the inverse of A via:

[a−1] = A−1

4.1.1 Exercises

1. Show that the general linear group of 2× 2, GL(2;F2), and S3 are isomorphic.

2. Is the group GL(1;Fp) abelian? What is its order?

3. What is the center of GL(n;F)? What is the order of the center of GL(n;Fp)?

4.2 Elementary Row Operations as Matrices
• What is the basis matrix?

– a matrix Eij , such that:

(Eij)lm =

{
1, l = i,m = j

0, otherwise

• How can row addition be represented as a matrix?

– we use the matrix:
I+ λEij

to add λ times the jth row to the ith row
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– as an example, if we want to add the 2 times the 3rd row to the 1st column of:
1 2 3

1 1 1

3 2 1


we apply the above matrix:

1 0 2

0 1 0

0 0 1



1 2 3

1 1 1

3 2 1

 =


1 + 2(3) 2 + 2(2) 3 + 2(1)

1 1 1

3 2 1


– from this we see that Eij does nothing but “pick up” the jth row of the matrix to which it is

applied on, and puts it in the ith row of the resulting matrix
– notice, I + λEij is invertible (since (I + λEij)(I − λEij) = I) so applying it is reversible, thus

preserving the solution

• How can row swap be represented as a matrix?

– define the matrix Pij which swaps row i with row j

– Pij will just be the identity matrix, with its own ith and jth rows swapped
– this can be thought as a homomorphism Fm → Fm

– again, PijPij = I, so the operation is reversible

4.3 Theorem: Elementary Matrices as Building Blocks
• What is an elementary matrix?

– a (square) matrix differing from I in at most one entry

• When are elementary matrices invertible?

– so long as the change to I doesn’t change a 1 by a 0, the elementary matrix is invertible

Every square matrix with entries in a field can be written as a product of
elementary matrices. [Theorem 2.2.3]

(This here is a nice work through; in this proof, they choose to apply right multiplications, when, as far
as I am concerned, applying left EROs should be sufficient)
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Proof. Notice, we can represent any permutation matrix as a product of elementary matrices, namely:

Pij = diag(1, . . . , 1,−1, 1, . . . , 1)(I+ Eij)(I− Eji)(I+ Eij)

where the −1 in diag(1, . . . , 1,−1, 1, . . . , 1) is at the jth diagonal entry.
Instead of getting all theoretical, lets use an example, with a 3 ×3 matrix. For example, if we want to

swap the first and second rows:
1 0 0

0 −1 0

0 0 1



1 1 0

0 1 0

0 0 1




1 0 0

−1 1 0

0 0 1



1 1 0

0 1 0

0 0 1



=


1 0 0

0 −1 0

0 0 1



1 1 0

0 1 0

0 0 1




1 1 0

−1 0 0

0 0 1



=


1 0 0

0 −1 0

0 0 1




0 1 0

−1 0 0

0 0 1



=


0 1 0

1 0 0

0 0 1



If we then apply this to our matrix above:
0 1 0

1 0 0

0 0 1



1 2 3

1 1 1

3 2 1

 =


1 1 1

1 2 3

3 2 1


The second thing to notice is that if an elementary matrix is invertible, then its inverse will also be an

elementary matrix. We have already seen that for example (I + λEij)(I − λEij) = I. Moreover, a product
of invertible matrices is also invertible (if A,B are invrtible, the inverse of AB is B−1A−1. Notice, any
elementary matrix can be constructed by chaining row swaps and row additions. Row swaps are invertible
(since they are a product of invertible matrices). Hence, any elementary matrix must be invertible.

With all this in mind, we can give the proof. Take an arbitrary matrix A. Then:

1. We can find invertible, elementary matrices S1, S2, . . . , St, such that:

St . . . S1A

is in row echelon form (this is just Gaussian elimination through EROs)

2. We can then reduce the columns, by applying a set of invertible, elementary matrices T1, . . . , Ts to the
right of the resulting matrix:

St . . . S1AT1 . . . Ts

3. by reducing rows and columns, we can obtain a diagonal matrix by simply using elementary matrices:

D = diag(1, . . . , 1, 0, . . . , 0)
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4. D can be expressed using elementary matrices (apparently non-invertible) as well, so overall:

St . . . S1AT1 . . . Ts = D1 . . . Dk

Hence, we can express A as a product of elementary matrices:

A = S−1
1 . . . S−1

t D1 . . . DkT
−1
s . . . T−1

1

4.4 The Smith Normal Form
• When is a matrix in Smith normal Form?

– a matrix is in Smith Normal Form if all the non-zero entries are along the main diagonal, and
the non-zero entries are consecutive 1s 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


– alternatively, we can think of SNF as being an identity matrix, padded with 0s

4.5 Theorem: Transforming a Matrix into SNF

Given a matrix A ∈ Mat(n × m;F, there exist invertible matrices P,Q
such that PAQ is in Smith Normal Form. [Theorem 2.2.5]

Proof. We can find invertible elementary matrices S1, . . . , St such that

S1 . . . StA

is in row echelon form (these matrices perform eleemntary row operations to achieve this)

Once in row echeleon form, we can apply more matrices T1, . . . , Ts, such that:

S1 . . . StAT1 . . . Ts

is brought to Smith Normal Form.

We can then just define:
P = S1 . . . St

Q = T1 . . . Ts
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4.6 Matrix Rank
• What is the column rank of a matrix?

– the dimension of the space generated by the columns of a matrix

• What is the row rank of a matrix?

– the dimension of the space generated by the rows of a matrix

• When does a matrix have full rank?

– when both the column and row ranks are equal, and they are equal to the smallest number, out
of the number of rows or columns

4.7 Theorem: Column and Row Rank

The column rank and the row rank of a matrix are equal. [Theorem
2.2.8]

Proof. Notice, applying elementary row operations won’t change the column rank of a matrix (and if we
transpose it, EROs won’t change the row rank). This is because elementary row operations are linear
combinations of the columns/row vectors, so this won’t change the number of linear independent vectors
which are part of the matrix rows/columns. In particular, this means that any matrix A has the same
column and row rank as its corresponding SNF matrix. But a matrix in SNF has the same row and column
ranks (since this is given by the number of LiD vectors, and these are given by the number of 1s present
along the rows/columns, and this number is the same).

4.7.1 Exercises (TODO)

1. Find a 3× 3 matrix with all entries non-zero, but with rank 2.

4.8 Inverting Matrices
• How can you invert a matrix?

– the idea is to write an augmented matrix of the form:(
A I

)
– then, apply EROs, such that we obtain:(

I (S1S2 . . . St)I
)

– then, the inverse will be:
A−1 = S1S2 . . . St
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4.8.1 Exercises (TODO)

1. Show that:
rank(A+B) ≤ rank(A) + rank(B)

2. Show that:
rank(AB) ≤ min{rank(A), rank(B)}

3. Let r = rank(B), where B is such that:

B ∈ Mat(n× r;F)

Show that there exists E ∈ Mat(r × n;F such that:

EB = 1r

Similarly let C ∈ Mat(r × n;F) where rank(C) = r. Then there exists H ∈ Mat(n× r;F) such
that CH = 1r.

4. Let A ∈ Mat(m× n;F) have rank r. Show that A = BC, where:

• B ∈ Mat(m× r;F)
• C ∈ Mat(r × n;F)

and rank(B) = rank(C) = r.

1. Is this decomposition unique?
2. Hence, or otherwise, show that A can be decomposed as a sume of r rank 1 matrices.

5 Workshop
1. True or False. If f : F 4 → F 2 is a linear map such that:

ker(f) = {(x1, x2, x3, x4)
T | x1 = 2x3, x2 = 4x4}

then f is surjective.

Notice, the kernel is a 2 dimensional vector subspace, since we can write it as:

ker(f) =




2s

4t

s

t



∣∣∣∣∣∣∣∣∣∣∣∣
s, t ∈ F


so clearly it has 2 basis vectors.
The Rank-Nullity Theorem tells us that:

dim(F 4) = dim(ker(f)) + dim(im(f))) =⇒ dim(im(f)) = 2

But notice, F 2 is a two-dimensional vector space, and im(f) is also a 2-dimensional vector space, which
means that F 2 = im(a). Hence, it follows that f is surjective.
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2. Let:

π =

1 2 3 4 5

1 3 2 5 4

 π′ =

1 2 3 4 5

4 5 3 2 1

 π′′ =

1 2 3 4 5

5 1 4 3 2


Define Pπ as the linear mapping:

Pπ(ei) = eπ(i)

and define similar mappings Pπ′ , Pπ′′ .
(a) Write the permutations above as a product of disjoint cycles.

π = (1)(23)(45)

π′ = (1425)(3)

π′′ = (152)(34)

(b) Determine the representing matrices of Pπ, Pπ′ , Pπ′′

We obtain these by permuting the standard basis vectors, according to each of the permutations:

[Pπ] =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0



[P ′
π] =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0



[P ′′
π ] =



0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0


(c) Compute π′π, π′′π′ and π′′π′π

π′π = (1425)(23)(45) = (14)(235)

π′′π′ = (152)(34)(1425) = (134)

π′′π′π = (152)(34)(1425)(23)(45) = (13245)
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(d) Express the permutations as a product of transpositions.

π = (1)(23)(45) = (23)(35)

π′ = (1425)(3) = (15)(12)(14)

π′′ = (152)(34) = (12)(15)(34)

3. Let the linear map a : F 3 → F 2 be given by the matrix:

A =

1 2 3

1 1 1


Determine ker(a), and hence verify the Rank-Nullity Theorem for a.

Let:

v =


v1

v2

v3

 ∈ ker(a)

Then:
Av = 0

implies that:
v1 + 2v2 + 3v3 = 0 v1 + v2 + v3 = 0

which is true if and only if:
v2 + 2v3 = 0 =⇒ v2 = −2v3

Let s ∈ F , such that v3 = s. Then, v2 = −2s and:

v1 + 2v2 + 3v3 = 0 ⇐⇒ v1 − 4s+ 3s = 0 =⇒ v1 = s

Hence, the kernel is a one dimension subspace:

ker(a) =

s


1

−2

1


∣∣∣∣∣∣∣∣∣ s ∈ F


The rank is the dimension of the image, which is equal to the number of linearly independent rows
in A. We can clearly see that the rows are not multiples, so im(a) = 2. Indeed, dim(F 3) = 3 and
dim(ker(a)) + dim(im(a)) = 1 + 2 = 3, as expected by Rank-Nullity.

4. Let F ∈ {Q,R,C}, and let a0, . . . , an ∈ F be distinct. For k ∈ [0, n] define:

pk(x) =

n∏
i=0,i6=k

(
x− ai
ak − ai

)
∈ F [x]≤n

(a) Show that pk(ai) = δik

If j = k:

pk(aj) =

n∏
i=0,i6=k

(
aj − ai
ak − ai

)
=

n∏
i=0,i6=k

(
ak − ai
ak − ai

)
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since k 6= i, it follows that this is a product of 1s, so pk(aj) = 1.
If j 6= k:

pk(aj) =

n∏
i=0,i6=k

(
aj − ai
ak − ai

)
notice, i ∈ [0, n], so in particular, i = j at some point, so the product has a 0 term, and so,
pk(aj) = 0.
Thus, pk(aj) = δjk.

(b) Show that B = {p0(x), . . . , pn(x)} forms a basis of F [x]≤n.

We first show that this is a linearly independent set. Consider:
n∑

i=0

λipi(x) = 0

Evaluating at aj , we get that:
λj = 0

Since
∑n

i=0 λipi(x) = 0 must hold for any x, it holds for x = aj ,∀j ∈ [0, n] so this means that
∀j ∈ [0, n], λj = 0, so the set is linearly independent.
Now, notice that the set {p0(x), . . . , pn(x)} has n+ 1 elements, and that dim(F [x]≤n) = n+ 1, so
it must be the case that the set is indeed a basis.

(c) Show that an arbitrary polynomial q(x) ∈ F [x]≤n may be written as:

q(x) =

n∑
k=0

q(ak)pk(x)

Let q be an nth degree polynomial. Since B is a basis, we can write:

q(x) =

n∑
k=0

λkpk(x)

But if we evaluate at ai:

q(ai) =

n∑
k=0

λkpk(ai) = λi

Thus, any polynomial q can be written (uniquely) as:

q(x) =

n∑
k=0

q(ak)pk(x)

(d) Deduce that for any n+ 1 points:

((a0, c0), . . . , (an, cn))

with distinct first coordinate, there exists a unique polynomial of degree n through
them. This is known as the Lagrange Interpolation Formula.

By the above, if we set q(ai) = ci, then the polynomial:

q(x) =

n∑
k=0

q(ak)pk(x)

goes through each of the points, and since the ai are distinct, this representation is unique.

Page 32



(e) Hence, show that:
n∑

k=0

alk∏n
i=0,i6=k(ak − ai)

=

{
0, l < n

1, l = n

Consider the polynomial q(x) = xl. By Lagrange Interpolation:

q(x) = xl =

n∑
k=0

alkpk(x) =

n∑
k=0

alk

n∏
i=0,i6=k

(
x− ai
ak − ai

)
Now, consider the coefficient of xn in the expansion. This is:

n∑
k=0

alk∏n
i=0,i6=k(ak − ai)

But notice, since we q(x) = xl, whenever l = n, we must have:

n∑
k=0

alk∏n
i=0,i6=k(ak − ai)

= 1

and if l < n then:
n∑

k=0

alk∏n
i=0,i6=k(ak − ai)

= 0

as required.
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