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Based on the notes by Iain Gordon, Section 6.1-6.4

1 Jordan Normal Form Basics
1.1 Recap: Triangularisability

Let f : V → V be an endomorphism of a finite dimensional F-
vector space V .
The following are equivalent:

1. There exists an ordered basis:

B = {v1, . . . , vn}

such that:

f(vj) =

j∑
i=1

aijvi, i ∈ [1, n]

In particular, this means that B[f ]B will be a triangular matrix,
with entries aij:

A = B[f ]B =


a11 a12 . . . a1n

0 a22 . . . a2n
... ... . . . ...

0 0 . . . ann


This means that f is triangularisable.

2. The characteristic polynomial, Xf , decomposes into linear
factors in F [x]

[Proposition 4.6.1]

Throughout we operate over an algebraically closed field (i.e F = C). For triangularisability, this means that
any endomorphism f will be triangularisable, since the algebraic closure ensures the linear decomposition of
Xf .

• What is a nilpotent Jordan Block?

– let r ∈ N, r ≥ 1
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– define a nilpotent Jordan Block of size r as the matrix:

(J(r))ij =

{
1, j = i+ 1

0, otherwise
=⇒ J(r) =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 0 0 0 . . . 0


• What is a Jordan Block?

– let r ∈ N, r ≥ 1 and λ ∈ F

– define a Jordan Block of size r and eigenvalue λ as the matrix:

J(r, λ) = λIr + J(r) =⇒ J(r, λ) =



λ 1 0 0 . . . 0

0 λ 1 0 . . . 0

0 0 λ 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 0 0 0 . . . λ


– notice, λIr and J(r, λ) commute
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1.2 Theorem: Jordan Normal Form

Let F be an algebraically closed field.
Let V be a finite dimensional vector space.
Let:

φ : V → V

be an endomorphism with characteristic polynomial:

Xφ(x) =
s∏

i=1

(x− λs)
ai ∈ F [x]

where ai denotes the algebraic multiplicity of the distinct eigenvalues
λi, such that if n = dim(V ):

ai ≥ 1 and
s∑

i=1

ai = n

Then, there exists an ordered basis B of V , such that the representing
matrix B[φ]B is in Jordan Normal Form.
That is, B[φ]B is a block diagonal matrix, with Jordan Blocks on its
diagonal:

B[φ]B =



J(r11, λ1) 0 0 0 0
0 . . . 0 0 0
0 0 J(r1m1 , λ1) 0 0
0 0 0 . . . 0
0 0 0 0 J(rsms , λs)


where rij ≥ 1 and:

ai =

mi∑
j=1

rij

[Theorem 6.2.2]
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1.3 Jordan Normal Form and Triangularisation

A matrix in Jordan Normal Form is a special case of upper triangu-
lar matrix, with the restriction:

aij =

{
0 or 1, i = j − 1

0, i < j − 1

such that for a given a basis {v1, . . . , vn}:

φ(v1) = a11v1
φ(v2) = a12v1 + a22v2

...
φ(vn) = a(n−1)nvn−1 + annvn
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1.4 Jordan Block and Endomorphism Properties

For Jordan Blocks, the above can be more specific. Given a basis B =
{v1, . . . , vn}, and endomorphism f : V → V with eigenvalue λ ∈ F
satisfies:

f(v1) = λv1
f(v2) = v1 + λv2

...
f(vn) = vn−1 + λvn

so that:
B[f ]B = J(r, λ)

Moreover, if we define an endomorphism:

e = f − λ idV e(v) = f(v)− λv

then in particular:

e(vi) = f(vi)− λvi = (vi−1 + λvi)− λvi = vi−1

The endomorphism e is quite interesting (and useful, as we will see below).
In particular:

• er = 0

• ej 6= 0, j ∈ [1, r − 1]

• Vj = ker(ej) = 〈vi, . . . , vj〉

• f(Vj) ⊆ Vj

2 Proving Jordan Normal Form
Most of this will be directly copied from the notes provided by the course: the proof is long and tedious, and
to be fair, it is pretty well explained and I don’t think I can add much insight. I’ll still try to add some
stylistic adaptations/explanations where needed.

2.1 Intuition for Jordan Normal Form
2.1.1 Step 1: Decomposing Vector Space by Using Terms in Characteristic Polynomial

Step 1: The first step is to decompose the vector space V into a direct sum V = ⊕s
i=1Vi according to the

factorization of the characteristic polynomial as a product of linear factors

χφ(x) = (x− λ1)
a1(x− λ2)

a2 . . . (x− λs)
as ∈ F [x]

for distinct scalars λ1, λ2, . . . , λs ∈ F , where for each i:
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• Vi = ker ((φ− λi idV )
ai : V → V ) ⊆ V , and

• φ(Vi) ⊆ Vi, and

• (φ− λiidVi
)mi is zero on Vi for mi large enough.

This behaviour is an example of a general phenomenon from module theory called the Krull-Remak-Schmidt
Decomposition.

2.1.2 Step 2: Analysing Terms in Vector Space Decomposition

Step 2: The outcome of the first step is to focus attention on the individual spaces Vi instead of V .
These spaces have the advantage that a power of the endomorphism (φ − λiidVi

) : Vi → Vi is zero: in
other words:

ψ := φ− λiidVi

is a nilpotent linear mapping on Vi. I already showed you this situation in Exercise 39:

An endomorphism f : V → V of an f -vector space is nilpotent if and
only if ∃d ∈ N : fd = 0. Let f be nilpotent.
Show that the vector space V has an ordered basis A such that the rep-
resenting matrix A[f ]A is upper triangular, and with 0s along the
main diagonal.
Show that any n×n matrix M that is upper triangular with 0s along the
main diagonal satisfies Mn = 0.

The proof will study a finite dimensional vector space W together with a nilpotent endomorphism

ψ :W →W

I will show that there is an ordered basis of W , written {v11, v21, v31, . . . , v12, v22, v32, . . .} such that the
matrix of ψ with respect to this basis is block diagonal with nilpotent Jordan blocks of various sizes
along the diagonal.

In my head, I picture such a basis together with ψ as follows:

v51 7→v41 7→v31 7→ v21 7→v11 7→0

v52 7→v42 7→v32 7→ v22 7→v12 7→0

v33 7→ v23 7→v13 7→0

v24 7→v14 7→0

v15 7→ 0

This picture would describe an example where dimW = 16 because each of the 16 boxes represents one basis
vector; the mapping ψ moves from left to right through the boxes, vanishing when it reaches the outer edge
of the diagram. In the example the matrix would have the form diag(J(5), J(5), J(3), J(2), J(1)).
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The vector space W has ordered basis (partitioned to match the Jordan blocks)

B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5

= (v11, v21, v31, v41, v51) ∪ (v12, v22, v32, v42, v52) ∪ (v13, v23, v33) ∪ (v14, v24) ∪ (v15)

and ψ :W →W is given by

ψ(v11) = 0 , ψ(v21) = v11 , ψ(v31) = v21 , ψ(v41) = v31 , ψ(v51) = v41 ,

ψ(v12) = 0 , ψ(v22) = v12 , ψ(v32) = v22 , ψ(v42) = v32 , ψ(v52) = v42 ,

ψ(v13) = 0 , ψ(v23) = v13 , ψ(v33) = v21 ,

ψ(v14) = 0 , ψ(v24) = v14 ,

ψ(v15) = 0 .

Define an increasing sequence of subspaces

W0 = {0} ⊂W1 ⊂W2 ⊂W3 ⊂W4 ⊂W5 = W

with
Wk = ker(ψk :W →W ) = {w ∈W |ψk(w) = 0} .

the kernel of the k-fold iteration of ψ

ψk = ψ ◦ ψ ◦ · · · ◦ ψ : W →W .

Thus Wk is spanned by the basis elements vij ∈ B with ψk(vij) = 0 ∈W , and

W1 = 〈v11, v12, v13, v14, v15〉 ,

W2 = 〈v24, v23, v22, v21〉 ⊕W1 ,

W3 = 〈v33, v32, v31〉 ⊕W2 ,

W4 = 〈v42, v41〉 ⊕W3 ,

W5 = 〈v52, v51〉 ⊕W4 .

The subspaces are most easily illustrated by the coloured sequence of boxes in the diagram:

7→
7→

7→
7→

7→
7→

7→
7→

7→
7→

7→
7→

7→

7→
7→

7→
7→

7→
7→

7→
7→
7→

7→
7→

The first diagram on the left has W4 in white, the next one has W3 in white, the next one W2, the next W1,
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and the final one {0}. The coloured boxes produce a basis for the quotient vector spaces

W/W4 = 〈W4 + v52,W4 + v51〉 ,

W/W3 = 〈W3 + v52,W3 + v51,W3 + v41,W3 + v42〉 ,

W/W2 = 〈W2 + v52,W2 + v51,W2 + v41,W2 + v42,W2 + v33,W2 + v32,W2 + v31〉 ,

W/W1 = 〈W1 + v52,W1 + v51,W1 + v41,W1 + v42,W1 + v33,W1 + v32,W1 + v31,

W1 + v24,W1 + v23,W1 + v22,W1 + v21〉 .

The more darkly coloured boxes (all on the left column) are “generators” from which all other basis vectors
(more lightly coloured with the same colour) are produced using the mapping ψ.

2.2 Proof of Jordan Normal Form: Step 1
Let φ : V → V be an endomorphism of the finite dimensional F -vector space V . Since F is algebraically
closed, the characteristic polynomial χφ(x) decomposes into linear factors by Theorem 3.3.14. I write it as
follows

χφ(x) =

s∏
i=1

(x− λi)
ai ∈ F [x]

where each ai is a positive integer, λi 6= λj for i 6= j, and the λi are the eigenvalues of φ. For 1 6 j 6 s
define

Pj(x) =
s∏

i=1
i 6=j

(x− λi)
ai

2.2.1 Lemma: Polynomial Sum

There exists polynomials Qj(x) ∈ F [x] such that
s∑

j=1

Pj(x)Qj(x) = 1.

[Lemma 6.3.1]

Proof. This is an application of the extended Euclidean algorithm for F [x], based on Theorem 3.3.4. This
algorithm computes the highest common factor of a set of polynomials in terms of the polynomials themselves
and some subsidiary polynomials Qj(x):

s∑
j=1

Pj(x)Qj(x) = h.c.f.{P1(x), . . . , Ps(x)}

Since the highest common factor of the set of polynomials {P1(x), P2(x), . . . , Ps(x)} is 1, the lemma follows.

The extended Euclidean algorithm for F [x] works in exactly the same way as for Z, but using Theorem
3.3.4 here, the division algorithm for polynomials with coefficients in the field F .
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2.2.2 Defining the Generalised Eigenspace

• What is the generalised eigenspace of an endomorphism?

– the generalized eigenspace of φ with eigenvalue λi, Egen(λi, φ), is the following subspace of V

Egen(λi, φ) = {v ∈ V | (φ− λi idV )
ai(v) = 0}

– notice, the standard eigenspace:

E(λi, φ) = {v ∈ V | (φ− λi idV )(v) = 0} .

is nothing but a subset of the generalised eigenspace

• What is the algebraic multiplicity of an endomorphism?

– the dimension of Egen(λi, φ) is the algebraic multiplicity of φ with eigenvalue λi

• What is the geometric multiplicity of an endomorphism?

– the dimension of the eigenspace E(λi, φ) is called the geometric multiplicity of φ with
eigenvalue λi

– notice, the algebraic multiplicity of λi is greater than its geometric multiplicity

2.2.3 Stable Endomorphisms

• When is an endomorphism stable?

– let f : X → X be a mapping from a set X to itself.
– a subset Y ⊆ X is stable under f precisely when

f(Y ) ⊆ Y

– that is, if y ∈ Y then f(y) ∈ Y .
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2.2.4 Proposition: Step 1 - Direct Sum Decomposition

For each 1 6 i 6 s, let

Bi = {vij ∈ V | 1 6 j 6 ai}

be a basis of Egen(λi, φ), where ai is the algebraic multiplicity of φ
with eigenvalue λi, such that

s∑
i=1

ai = n is the dimension of V .

Then:

1. Each Egen(λi, φ) is stable under φ.

2. For each v ∈ V there exist unique vi ∈ Egen(λi, φ) such that
v =

∑s
i=1 vi. In other words, there is a direct sum decomposition

V =
s⊕

i=1

Egen(λi, φ)

with φ restricting to endomorphisms of the summands

φi = φ| : Egen(λi, φ) → Egen(λi, φ) .

3. Then

B = B1 ∪ B2 ∪ · · · ∪ Bs = {vij | 1 6 i 6 s, 1 6 j 6 ai}

is a basis of V . The matrix of the endomorphism φ with respect to
this basis is given by the block diagonal matrix

B[φ]B =


B1 0 0 0

0 B2 0 0

0 0
. . . 0

0 0 0 Bs

 ∈ Mat(n;F )

with Bi =Bi
[φi]Bi

∈ Mat(ai;F ).

[Proposition 6.3.5]

Proof. (1) Let v ∈ Egen(λi, φ) so that (φ− λi idV )
ai(v) = 0. Then

φ(φ− λi idV ) = φ2 − λiφ = (φ− λi idV )φ : V → V ,

so I deduce that for all v ∈ Egen(λi, φ)

(φ− λi idV )
aiφ(v) = φ(φ− λi idV )

ai(v) = φ(0) = 0 ∈ V .

This shows that φ(v) ∈ Egen(λi, φ) so that Egen(λi, φ) is indeed stable under φ.
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(2) By (2.2.1) I have 1 =
∑s

j=1 Pj(x)Qj(x) and so evaluating this at the endomorphism φ gives

idV =

s∑
j=1

Pj(φ) ◦Qj(φ) (1)

Therefore, for all v ∈ V I have

v =

s∑
j=1

Pj(φ) ◦Qj(φ)(v)

Now I observe that

(φ− λj idV )
aj ◦ Pj(φ) ◦Qj(φ)(v) = χφ(φ) ◦Qj(φ)(v) = 0(v) = 0

where I used the Cayley-Hamilton Theorem for the second equality. Setting

vj := Pj(φ) ◦Qj(φ)(v) ∈ Egen(λj , φ)

we have

v =

s∑
j=1

vj ,

demonstrating that V =
s∑

j=1

Egen(λj , φ).

It remains to check uniqueness in this decomposition. So suppose that
∑s

j=1 vi =
∑s

i=1 wi with vi, wi ∈
Egen(λi, φ) for each i. This means that

∑s
i=1(vi − wi) = 0. Given any xj ∈ Egen(λj , φ) I have for k 6= j

Pk(φ)(xj) =

s∏
`=1
` 6=k

(φ− λ` idV )
a`(xj) = 0

since (φ− λj idV )
aj (xj) = 0 and (φ− λj idV )

aj is a factor of Pk(φ). So, on applying (1), I find

xj =

s∑
k=1

Pk(φ) ◦Qk(φ)(xj) = Pj(φ) ◦Qj(φ)(xj)

I apply this to the equality
∑s

i=1(vi − wi) = 0. For each j this gives

0 = Pj(φ)Qj(φ)

(
s∑

i=1

(vi − wi)

)
=

s∑
i=1

Pj(φ)Qj(φ)(vi − wi) = vj − wj .

It follows that vj = wj for each j, as required.

(3) Since the set {vij : 1 6 j 6 ai} is a basis of Egen(λi, φ) for each i, it should be clear to you that the
union of these bases is a basis of ⊕s

i=1E
gen(λi, φ). If you’re not sure, it is proved in the solution to Exercise

6:

Given F -vector spaces V1, . . . , Vn show that the dimension of their carte-
sian product is given by:

dim(V1 ⊕ . . .⊕ Vn) = dim(V1) + . . .+ dim(Vn)
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Since V = ⊕s
i=1E

gen(λi, φ) by Part (2), that deals with the basis B of V .
What is the matrix with the respect to this basis? (I really need to take an ordered basis: I will

take v11, v12, . . . , v1n1
, v21, . . . , v2n2

, . . . , vsns
as the ordering.) If I calculate the matrix B[φ]B by the usual

method of Theorem 2.3.1, I see that since φ(vij) ∈ Egen(λi, φ) by Part (1), φ(vij) can be expressed as a
linear combination of the vectors vij where 1 6 j 6 ai. Therefore the matrix is block diagonal with the i-th
block having size (ai × ai).

That completes the first step of the strategy. Each matrix Bi appearing in Part (3) of the Theorem in
(2.2.4) represents the restriction of φ to Egen(λi, φ). This endomorphism of Egen(λi, φ) is special because it
has the property that a power of φ− λi idEgen(λi,φ) is zero.

2.2.5 Exercises (TODO)

1. Using the Section above (2.2.4) show that:

1. each matrix A ∈ Mat(n;F ) can be written as A = D + N where D is a diagonalisable
matrix and N is a nilpotent matrix and DN = ND;

2. the decomposition A = D +N is unique.

This decomposition is called the Jordan decomposition of A; it plays a basic role in the
theory of Lie algebras.

So now to the next step, studying nilpotent endomorphisms.

2.3 Proof of Jordan Normal Form: Step 2
Let W be a finite dimensional vector space and ψ : W → W an endomorphism such that some power of ψ
is zero, that is ψm = 0 for some m. This should remind you of Exercise 39.

I will fix m to be minimal: ψm = 0 but ψm−1 6= 0. For 0 6 i 6 m define

Wi = ker(ψi)

If w ∈Wi then
ψi+1(w) = ψ ◦ ψi(w) = ψ(0) = 0

so that w ∈Wi+1. It follows that
Wi ⊆Wi+1

Moreover, since ψ0 = idW and ψm = 0 I also see that W0 = 0 and Wm = W . Therefore I get a chain of
subspaces

0 =W0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wm−1 ⊆Wm =W

2.3.1 Lemma: Injective, Well-Define Mapping Between Quotient Spaces

For each i, define a linear mapping

ψi :
Wi

Wi−1

→ Wi−1

Wi−2

by
ψi(w +Wi−1) = ψ(w) +Wi−2, w ∈ Wi

. Then ψi is well-defined and injective. [Lemma 6.3.6]
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Proof. Let w,w′ ∈Wi. First, ψ(w) ∈Wi−1 since

ψi−1(ψ(w)) = ψi(w) = 0

Second, I check that the mapping is well-defined. That is:

w +Wi−1 = w′ +Wi−1 ⇐⇒ ψ(w) +Wi−2 = ψ(w′) +Wi−2

If
w +Wi−1 = w′ +Wi−1

then w − w′ ∈Wi−1. Therefore
ψi−1(w − w′) = 0

and so
0 = ψi−2 ◦ ψ(w − w′) = ψi−2 ◦ (ψ(w)− ψ(w′))

Therefore, ψ(w)− ψ(w′) ∈Wi−2 so that

ψ(w) +Wi−2 = ψ(w′) +Wi−2

This confirms that the mapping ψi is well-defined.

I now have to prove that ψi is injective. If

ψi(w +Wi−1) = 0 +Wi−2

then
ψ(w) ∈Wi−2

which means that
0 = ψi−2(ψ(w)) = ψi−1(w)

so that w ∈Wi−1, or, in other words, that w +Wi−1 = 0+Wi−1. This proves that kerψi is zero and hence
that ψi is injective.

This result shows me that if I define

di = dim
(

Wi

Wi−1

)
1 6 i 6 m

then d1 > d2 > · · · > dm. This is because ψ will map basis elements of Wi

Wi−1
to basis elements of Wi−1

Wi−2
. The

mapping being injective means that
∣∣∣ Wi

Wi−1

∣∣∣ ≤ ∣∣∣Wi−1

Wi−2

∣∣∣ so that di ≤ di−1 or equivalently di ≥ di+1.

2.3.2 Lemma: Mappings Conserving Linear Independence

To refine the above and help me to pick a good basis for W , I need a little technical lemma.

Let f : X → Y be an injective linear mapping between the F -vector
spaces X and Y . If {x1, . . . , xt} is a linearly independent set in X,
then {f(x1), . . . , f(xt)} is a linearly independent set in Y . [Lemma
6.3.7]
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Proof. As is usual for most of the proofs of linear independence in an abstract setting, you just need to sniff
the air and then follow your nose. So let α1, . . . , αt ∈ F be scalars. Suppose that

α1f(x1) + · · ·+ αtf(xt) = 0Y

Then the linearity of f allows me to rewrite this equation as

f(α1x1 + · · ·+ αtxt) = 0Y

Since f is assumed to be injective, this means that α1x1 + · · · + αtxt = 0X . As the set {x1, . . . , xt} are
linearly independent, this implies that α1 = · · · = αt = 0. Thus {f(x1), . . . , f(xt)} is a linearly independent
set.

2.3.3 Algorithm for Basis Elements of Quotients

I can now develop an algorithm to construct a basis of each Wi/Wi−1. The algorithm goes as follows:

1. Choose an arbitrary basis for Wm/Wm−1, say

{vm,1 +Wm−1, vm,2 +Wm−1, . . . , vm,dm
+Wm−1} .

2. Since
ψm :Wm/Wm−1 →Wm−1/Wm−2

is injective by Lemmas 6.3.6, 6.3.7 above, this proves that

{ψ(vm,1) +Wm−2, ψ(vm,2) +Wm−2, . . . , ψ(vm,dm
) +Wm−2}

is a linearly independent set in Wm−1/Wm−2.
Set

vm−1,i = ψ(vm,i) 1 6 i 6 dm

.

3. Choose vectors
{vm−1,i : dm + 1 6 i 6 dm−1}

so that
{vm−1,i +Wm−2 : 1 6 i 6 dm−1}

is a basis of Wm−1/Wm−2.

4. Repeat!
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Let me be explicit about what happens with a repetition.
At the i-th stage you will have chosen vectors

vj,k for m+ 1− i 6 j 6 m, 1 6 k 6 dj

so that {vj,k +Wj−1 : 1 6 k 6 dj} is a basis of Wj/Wj−1.
These vectors have the additional property that

ψ(vj,k) = vj−1,k, m+ 1− i < j 6 m

You’ll then define vm−i,k = ψ(vm+1−i,k) for 1 6 k 6 dm+1−i. By Lemmas
6.3.6, 6.3.7

{vm−i,k +Wm−i−1 : 1 6 j 6 dm+1−i}
is a linearly independent set in Wm−i/Wm−i−1.
You now choose {vm−i,k : dm+1−i + 1 6 k 6 dm−i} so that {vm−i,k +
Wm−i−1 : 1 6 k 6 dm−i} is a basis of Wm−i/Wm−i−1.
You reach the end of the algorithm when you have completed the m-th
stage: this produces a basis for W1/W0 = W1. Since W1 = ker(ψ) all
elements of this basis have the property that ψ(v1,k) = 0.

2.3.4 Lemma: Algorithm Constructs Basis for W

The set of elements

{vj,k : 1 6 j 6 m, 1 6 k 6 dj}

constructed in the algorithm above is a basis for W . [Lemma 6.3.8]

Proof. I check spanning first. I will show a finer statement:

For 1 6 i 6 m, the set of elements {vj,k : 1 6 j 6 i, 1 6 k 6 dj} spans Wi.

Of course, a statement like that is set up for a proof by induction.

1 Base Case

It holds for i = 1 because {v1,k : 1 6 k 6 d1} was constructed as a basis for W1, so in particular a
spanning set.

2 Inductive Hypothesis

Assume that the finer statement holds for a given i.

3 Inductive Step

Let v ∈Wi+1 be an arbitrary element. Since {vi+1,k +Wi : 1 6 k 6 di+1} is a basis for Wi+1/Wi, there
exist α1, . . . , αdi+1

∈ F such that

v +Wi = α1vi+1,1 + · · ·+ αdi+1
vi+1,di+1

+Wi
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It follows that
v − α1vi+1,1 − · · · − αdi+1vi+1,di+1

∈Wi

By induction this element can be expressed as a linear combination of vectors from the set {vj,k : 1 6 j 6
i, 1 6 k 6 dj}, and so v can be expressed as a linear combination of element of {vj,k : 1 6 j 6 i+1, 1 6 k 6
dj}. This confirms the finer statement for i+ 1 and hence completes the induction.

Now I know that the set {vj,k : 1 6 j 6 m, 1 6 k 6 dj} spans W = Wm and that it contains
∑m

j=1 dj
elements. I’ll now explain why dimW =

∑m
j=1 dj . With that fact in my pocket I can apply the Cardinality

Criterion for Bases, Part (2):

Let V be a finitely generated vector space. Then:

1. • each linearly independent subset L ⊂ V has at most dimV
elements

• if |L| = dimV , then L is a basis

2. • each generating set E ⊆ V has at least dimV elements
• if |E| = dimV , then E is a basis

[Corollary 1.6.7]

to deduce that the set is a basis.
To calculate dim(W ) I use repeatedly the general formula of Exercise 66: if M is an F -vector space and

N a subspace of M then dim(M/N) = dim(M)− dim(N). This gives:

dim(W ) = dim(Wm) = dim(Wm/Wm−1) + dim(Wm−1)

= dim(Wm/Wm−1) + dim(Wm−1/Wm−2) + dim(Wm−2)

...
= dim(Wm/Wm−1) + dim(Wm−1/Wm−2) + · · ·+ dim(W1/W0)

=

m∑
j=1

dj .

This lemma gives me a basis of W which I will order via the ordering on subscripts (j, k) < (j′, k′) if
and only if k < k′ or k = k′ and j < j′. So for instance (3, 2) < (1, 3) and (1, 3) < (2, 3) so that v1,3 would
appear in the list after v3,2 but before v2,3.
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2.3.5 Proposition: Jordan Block from Basis

Let B be the ordered basis of W constructed above

(vjk : 1 6 j 6 m, 1 6 k 6 dj)

Then

B[ψ]B = diag(J(m), . . . , J(m)︸ ︷︷ ︸
dm times

, J(m− 1), . . . , J(m− 1)︸ ︷︷ ︸
dm−1−dm times

, . . . , J(1), . . . , J(1)︸ ︷︷ ︸
d1−d2 times

)

where J(r) denotes the nilpotent Jordan block of size r. [Proposition
6.3.9]

Proof. It follows from the explicit construction of the basis B that

ψ(vi,j) =

{
vi−1,j if i > 1

0 otherwise

This tells me that the entries of the (i, j)-th column of the matrix B[ψ]B are all zero if i = 1 and otherwise
are zero everywhere except for a 1 in the (i − 1, j)-th row. This is the property that defines the nilpotent
Jordan blocks, so I get the description I claimed.

This completes Step 2 of the proof. Overall, we have shown that:

“For all nilpotent endomorphisms there exists a basis such that the rep-
resenting matrix can be written as a block diagonal matrix with nilpo-
tent Jordan blocks along the diagonal.”

2.3.6 Exercises (TODO)

1. Let ψ : V → V be a nilpotent endomorphism. Show that: the Jordan Normal Form of ψ is
unique up to re-ordering of the nilpotent Jordan blocks. Explicitly, if A and B are bases
of V such that

A[ψ]A = diag(J(a1), . . . , J(as)) and B[ψ]B = diag(J(b1), . . . , J(bs′))

for some positive integers a1, . . . , as and b1, . . . bs′ , then the multisets {a1, . . . , as} and {b1, . . . , bs′}
are equal.

2.4 Proof of Jordan Normal Form: Step 3
I now apply the outcome of Step 2 to each of the endomorphisms (φ− λi idV ) restricted to Egen(λi, φ).

This means each such endomorphism can be written as a block diagonal matrix of the form stated in
(2.3.5) for a suitable choice of basis.
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The endomorphism λi idV restricted to Egen(λi, φ) is of course λi idEgen(λi,φ) and so its matrix with respect
to the chosen basis is just λiIai . Therefore the matrix for φ = λi idV +(φ−λi idV ) is just λiIn plus the block
diagonal matrix found above from (2.3.5).

In other words it is a block diagonal matrix of the form stated in (2.3.5) where I replace each J(r) that
appears with J(r, λi). This means that each matrix Bi ∈ Mat(ai;F ) appearing in (2.2.4) has exactly the
form that I’m looking for in the statement of the Jordan Normal Form Theorem.

3 Worked Examples
3.1 General Strategy From Proofs
This strategy follows both from what was proven, alongside the proofs provided. We consider A ∈Mat(n, F ),
where F is an algebraically closed field.

1. Compute the characteristic polynomial XA =
∏s

i=1(x− λi)
ai

2. Given Pj =
∏s

i=1,i 6=j(x− λi)
ai, use the Euclidean Algorithm to

determine Qj(x) such that

1 =
∑
j=1

Pj(x)Qj(x)

Then:
Egen(λj, A) = col space(Pj(A)Qj(A))

3. For each j ∈ [1, s]:

(a) Let B = A− λjIn

(b) We know that:

{0} ⊆ ker(B) ⊆ . . . ⊆ ker(Baj) = Egen(λj, A)

(c) We find a basis for each ker(Bk) by applying the algorithm. Let
ek = dim(ker(Bk)) and set e0 = 0.
• Set dk = ek − ek−1 and β = ∅
• Set j ∈ Z as the largest integer with dj > 0 (stop if j doesn’t

exist)
• Let v ∈ ker(Bj) \ ker(Bj−1) with v 6∈ β

• Update β via:

β = β ∪ {Bj−1v, . . . , Bv, v}

• Set di = di − 1 for 1 ≤ i ≤ j and go to step 2

If this is too obscure, this is very nicely explained.
Alternatively, the Wikipedia Entry for Jordan Normal Form is quite good.
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3.2 Example from the Notes
Consider the matrix:

A =


1 −1 0 −1

0 2 0 1

−2 1 −1 1

2 −1 2 0


The characteristic polynomial can be computed by expanding along the third column:

XA(x) = (−1− x)

∣∣∣∣∣∣∣∣∣
1− x −1 −1

0 2− x 1

2 −1 −x

∣∣∣∣∣∣∣∣∣− 2

∣∣∣∣∣∣∣∣∣
1− x −1 −1

0 2− x 1

−2 1 1

∣∣∣∣∣∣∣∣∣
= −(1 + x)[(1− x)((2− x)(−x) + 1) + 2(−1 + (2− x)]− 2[(1− x)((2− x)− 1)− 2(−1 + (2− x)]

= −(1 + x)[(1− x)((2− x)(−x) + 1) + 2(1− x)] + 2(1− x)(1 + x)

= −(1 + x)(1− x)((2− x)(−x) + 1)− 2(1 + x)(1− x) + 2(1− x)(1 + x)

= −(1 + x)(1− x)((2− x)(−x) + 1)

= −(1 + x)(1− x)[x2 − 2x+ 1]

= −(1 + x)(1− x)(1− x)2

= −(1 + x)(1− x)3

= (1 + x)(x− 1)3

Hence, we have 2 eigenvalues λ1 = −1 and λ2 = 1.

λ1 = −1 has algebraic multiplicity 1, so we expect a one dimensional generalised eigenspace, spanned by
its corresponding eigenvector. We compute this:

(A+ I4)v1 =


2 −1 0 −1

0 3 0 1

−2 1 0 1

2 −1 2 1




v1

v2

v3

v4

 = 0 =⇒


3v2 + v4 = 0

2v1 − v2 − v4 = 0

2v1 − v2 + 2v3 + v4 = 0


Letting v2 = s, the first equation tells us that v4 = −3s. The second equation then says:

2v1 − s+ 3s = 0 =⇒ v1 = −s

The third equation then says:
−2s− s+ 2v3 − 3s = 0 =⇒ v3 = 3s

So it follows that that ker(A+ I4) is spanned by:
−s

s

3s

−3s

 = s


−1

1

3

−3


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λ2 = 1 has algebraic multiplicity 3.
We work on the first eigenvalue equation:

(A− I4)v2,1 = 0 (A− I4)v2,2 = v2,1 (A− I4)v2,3 = v2,2

Indeed:

(A− I4)v2 =


0 −1 0 −1

0 1 0 1

−2 1 −2 1

2 −1 2 −1




v1

v2

v3

v4

 = 0 =⇒

v2 + v4 = 0

v1 + v3 = 0



Letting v2 = s, v1 = t, it follows that ker(A− I4) is spanned by:
t

s

−t

−s

 = t


1

0

−1

0

+ s


0

1

0

−1


This is 2 dimensional, but we need a 3 dimensional generalised eigenspace.

We need to compute (A− I4)
2:

(A− I4)
2 =


0 −1 0 −1

0 1 0 1

−2 1 −2 1

2 −1 2 −1




0 −1 0 −1

0 1 0 1

−2 1 −2 1

2 −1 2 −1

 =


−2 0 −2 0

2 0 2 0

6 0 6 0

−6 0 −6 0


Thus to get the spanning vectors of ker((A− I4)

2):

(A− I4)
2v2 =


−2 0 −2 0

2 0 2 0

6 0 6 0

−6 0 −6 0




v1

v2

v3

v4

 = 0 =⇒


v1 + v3 = 0

v2 = a

v4 = b


So letting v1 = s, we have that v3 = −s so ker((A− I4)

2) is spanned by:
s

a

−s

b

 = s


1

0

−1

0

+ a


0

1

0

0

+ b


0

0

0

1


Notice, this time ker((A− I4)

2) has dimension 3, which is what we expected.
All the above work tells us that the resulting Jordan Normal Form will be composed of 3 Jordan Blocks:

• 1 corresponding to λ1 = −1, which will be 1× 1

• 2 corresponding to λ2 = 1:

Page 21



– 1 corresponds to ker(A− I4), which will be 2× 2

– 1 corresponds to ker((A− I4)
2), which will be 1× 1

To compute the Jordan Normal Form, we need a basis of 4 elements.
The first element corresponds to the first block (associated with eigenvalue λ1 = 1). Since dim(ker(A+

I4)) = 1, the basis vector:

u =


−1

1

3

−3


does the trick as a basis for Egen(−1, A).
We now focus on the more complicated case of Egen(1, A). To do so, we follow the algorithm. We start

with basis β = ∅ and d2 = 1
This tells us that we need to find a vector v such that:

(A− I4)
2v = 0 (A− I4)v 6= 0

This is equivalent to taking an element in ker((A− I4)
2) which isn’t in ker(A− I4). We have 2 choices for

this, since a general element of ker((A− I4)
2) is:

s


1

0

−1

0

+ a


0

1

0

0

+ b


0

0

0

1


We can pick:

v2,1 =


0

1

0

0


The algorithm then tells us to compute:

(A− I4)v2,1 =


0 −1 0 −1

0 1 0 1

−2 1 −2 1

2 −1 2 −1




0

1

0

0

 =


−1

1

1

−1


We let:

v1,1 =


−1

1

1

−1


and update β:

β = ∅ ∪ {v2,1, v1,1} = {v2,1, v1,1}
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Now, we need to pick a vector v in ker(A − I4) which isn’t in β and is linearly independent to β. Looking
again at a general term in ker(A− I4):

t


1

0

−1

0

+ s


0

1

0

−1


and:

β =




0

1

0

0

 ,


−1

1

1

−1




so for example we can pick:

v1,2 =


1

0

−1

0


This is the last step, since this gives us 3 vectors for λ2 = −1, with basis:

β = {v2,1, v1,1} ∪ {v1,2}

Overall, our final basis for the JNF is given by:

{u} ∪ {v2,1, v1,1} ∪ {v1,2} = {u, v2,1, v1,1, v1,2}

However, this basis needs to be ordered, for the theorem to work, according to the rules provided:

This lemma gives me a basis of W which I will order via the ordering on
subscripts (j, k) < (j′, k′) if and only if k < k′ or k = k′ and j < j′. So for
instance (3, 2) < (1, 3) and (1, 3) < (2, 3) so that v1,3 would appear in the
list after v3,2 but before v2,3.

So our ordered basis will be:
B = {u, v1,1, v2,1, v1,2}

In particular, we claim that with the matrix P = (u, v1,1, v2,1, v1,2) is such that:

P−1AP = diag(J(−1, 1), J(2, 1), J(1, 1))

Indeed:

P =


−1 −1 0 1

1 1 1 0

3 1 0 −1

−3 −1 0 0


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P−1 =
1

2


1 0 1 0

−3 0 −3 −2

2 2 2 2

0 0 −2 −2



P−1AP =
1

2


1 0 1 0

−3 0 −3 −2

2 2 2 2

0 0 −2 −2




1 −1 0 −1

0 2 0 1

−2 1 −1 1

2 −1 2 0




−1 −1 0 1

1 1 1 0

3 1 0 −1

−3 −1 0 0



=
1

2


−1 0 −1 0

−1 2 −1 0

2 2 2 2

0 0 −2 −2




−1 −1 0 1

1 1 1 0

3 1 0 −1

−3 −1 0 0



=
1

2


−2 0 0 0

0 2 2 0

0 0 2 0

0 0 0 2



=


−1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1



Just as expected.

3.3 Trinity College Dublin Example
Consider the matrix:

A =


−2 2 1

−7 4 2

5 0 0


We begin by computing its characteristic polynomial:

XA(x) = 5(4− (4− x))− x[(−2− x)(4− x) + 14]

= 5x− x[−(2 + x)(4− x) + 14]

= x[5 + (8 + 2x− x2)− 14]

= −x[x2 − 2x+ 1]

= −x(x− 1)2
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Thus, λ1 = 0 has algebraic multiplicity 1, whilst λ2 = 1 has algebraic multiplicity 2.
The next step is to compute the eigenvectors which span any necessary (generalised) eigenspace.
With λ1 = 1 we have:

Av =


−2 2 1

−7 4 2

5 0 0



v1

v2

v3

 =⇒

 v1 = 0

2v1 + v2 = 0


Letting s = v1, we thus get that ker(A− 0I3) is spanned by:

0

s

−2s

 = s


0

1

−2


The dimension of the kernel is 1, which is the algebraic multiplicity of λ1 = 0, so we are done.

Moving on to λ2 = 1:

(A− I3)v =


−3 2 1

−7 3 2

5 0 −1



v1

v2

v3

 = 0 =⇒


5v1 − v3 = 0

−3v1 + 2v2 + v3 = 0

−7v1 + 3v2 + 2v3 = 0


Letting v1 = s, the first equation tells us that v3 = 5s. The second equation then tells us that:

−3s+ 2v2 + 5s = 0 =⇒ v2 = −s

Thus, ker(A− I3) is spanned by: 
s

−s

5s

 = s


1

−1

5


This kernel has dimension one, but we have algebraic multiplicity 2. Thus, we need to compute ker((A−I3)2).

We begin by squaring:

(A− I3)
2 =


−3 2 1

−7 3 2

5 0 −1



−3 2 1

−7 3 2

5 0 −1

 =


0 0 0

10 −5 −3

−20 10 6


So we seek to satisfy:

(A− I3)
2v =


0 0 0

10 −5 −3

−20 10 6



v1

v2

v3

 = 0

Notice, letting v1 = s, v2 = t, we get that ker((A− I3)
2) is spanned by:

s

t

−10s+5t
−3

 = s


1

0

10
3

+ t


0

1

− 5
3


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We now apply the algorithm. For λ1 = 0, we can just choose:

u =


0

1

−2


as a basis for Egen(0, A).

For λ2 = 1, we pick v such that:

v ∈ ker((A− I3)
2) v 6∈ ker(A− I3)

We can just pick:

v2,1 =


1

0

10
3


We now just have to apply:

v1,1 = (A− I3)v2,1 =


−3 2 1

−7 3 2

5 0 −1




1

0

10
3

 =


1
3

− 1
3

5
3


As ordered basis we then pick:

B = {u, v1,1, v2,1}

Such that:

P =


0 1

3 1

1 − 1
3 0

−2 5
3

10
3

 =
1

3


0 1 3

3 −1 0

−6 5 10



P−1 =


10 −5 −3

30 −18 −9

−9 6 3


Then, we predict a JNF with 2 Jordan Blocks: 1 corresponding to λ1 = 0 (size 1× 1), and 1 corresponding
to λ2 = 1 of size 2× 2 (corresponding to ker((A− I3)

2). We compute:
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P 1AP =
1

3


10 −5 −3

30 −18 −9

−9 6 3



−2 2 1

−7 4 2

5 0 0




0 1 3

3 −1 0

−6 5 10



=
1

3


0 0 0

21 −12 −6

−9 6 3




0 1 3

3 −1 0

−6 5 10



=


0 0 0

7 −4 −2

−3 2 1




0 1 3

3 −1 0

−6 5 10



=


0 0 0

0 1 1

0 0 1



as expected.

For more examples, check Trinity College Dublin - Jordan Normal Form (Some Examples)

4 Workshop
1. True or false. There exists a matrix in Mat(3;C) with an eigenvalue of geometric multiplicity

2 and algebraic multiplicity 1.
This is false. By Remark 6.3.3, the algebraic multiplicity of any eigenvalue is always greater than or
equal to the geometric multiplicity.

2. The matrix with entries in C:

A =


1 1 −1

2 4 −3

4 8 −6


has characteristic polynomial:

pA(x) = x2(−1− x)

Find by hand an invertible matrix P such that P−1AP is in Jordan Normal Form.
We have 2 eigenvalues:

λ = 0 λ = −1

λ = 0 has algebraic multiplicity 2, so to compute Egen(0, A), we require 2 basis vectors. We begin by
computing the eigenvector corresponding to ker(A− 0I3):

(A− 0I3)v =


1 1 −1

2 4 −3

4 8 −6



v1

v2

v3

 = 0
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which implies that:
v1 + v2 − v3 = 0 2v1 + 4v2 − 3v3 = 0

The first equality tells us that v3 = v1 + v2 so:

2v1 + 4v2 − 3(v1 + v2) = 0 =⇒ v2 − v1 = 0 =⇒ v1 = v2

Hence, any eigenvector corresponding to A with eigenvalue λ = 0 is spanned by:
1

1

2


However, this doesn’t give us a basis for Egen(0, A). We thus compute the vectors associated to ker((A−
0I3)

2). We first compute:

(A− 0I3)
2 = A2 =


1 1 −1

2 4 −3

4 8 −6



1 1 −1

2 4 −3

4 8 −6

 =


−1 −3 2

−2 −6 4

−4 −12 8


Thus:

(A− 0I3)
2v =


−1 −3 2

−2 −6 4

−4 −12 8



v1

v2

v3

 = 0

which implies that:
−v1 − 3v2 + 2v3 = 0 =⇒ v3 =

v1 + 3v2
2

Hence, the vectors corresponding to ker((A− 0I3)
2) are given by the span of:

1

0

1
2

 ,


0

1

3
2


or alternatively: 

2

0

1

 ,


0

2

3



Notice, this span does include the original eigenvector (1, 1, 2)T , since
(1, 1, 2)T = (1, 0, 1/2)T + (0, 1, 3/2)T , so we could’ve perfectly constructed
the basis by using (2, 0, 1)T , (1, 1, 2)T as is done in the solutions.

Notice, this basis contains to vectors, so this is the basis we were seeking for Egen(0, A).
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We now compute a basis for E(−1, A). Since λ = −1 has algebraic multiplicity 1, we seek a single vector
for this. We compute a basis for ker(A+ I3):

(A+ I3)v =


2 1 −1

2 5 −3

4 8 −5



v1

v2

v3

 = 0

which implies that:

2v1 + v2 − v3 = 0 2v1 + 5v2 − 3v3 = 0 4v1 + 8v2 − 5v3 = 0

From the first equality, v3 = 2v1 + v2 so:

2v1 + 5v2 − 3(2v1 + v2) = 0 =⇒ −4v1 + 2v2 = 0

4v1 + 8v2 − 5(2v1 + v2) = 0 =⇒ −6v1 + 3v2 = 0

So we must have:
v2 = 2v1

Thus, the vector spanning ker(A+ I3) is: 
1

2

4


For the block corresponding to λ = −1, we need a single vector, so we just pick:

1

2

4


For the block(s) corresponding to λ = 0, we first seek a vector in ker((A− 0I3)

2) which isn’t in ker(A−
0I3). For example: 

2

0

1


We then have to compute: 

1 1 −1

2 4 −3

4 8 −6



2

0

1

 =


1

1

2


Hence, we have found 3 vectors, so our (ordered)basis will be:

B =



1

2

4

 ,


1

1

2

 ,


2

0

1



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The order of the basis is important; for each eigenvector corresponding
to an eigenvalue, we order from left to right according to the power of the
operator by which it is multiplied. In this case, for λ = 0, we use A0v,A1v
in the ordering.

We construct the transformation matrix:

P =


1 1 2

2 1 0

4 2 1


We need to invert. Just for fun, and since I want to practice, I’ll use 2 methods:

• Adjugate:

We begin by computing the cofactors:

C1,1 = 1− 0 = 1 C1,2 = −(2− 0) = −2 C1,3 = 4− 4 = 0

C2,1 = −(1− 4) = 3 C2,2 = 1− 8 = −7 C2,3 = −(2− 4) = 2

C3,1 = 0− 2 = −2 C3,2 = −(0− 4) = 4 C3,3 = 1− 2 = −1

Thus, the matrix of minors is: 
1 −2 0

3 −7 2

−2 4 −1


so transposing this gives us: 

1 3 −2

−2 −7 4

0 2 −1


Finally, we need to divide by the determinant of the matrix. If we expand along the second row:

det(P ) = 2C2,1 + C2,2 + 0C2,3 = 6 + (−7) = −1

Hence, dividing by −1:

P−1 =


−1 −3 2

2 7 −4

0 −2 1


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• Identity: 
1 1 2 1 0 0

2 1 0 0 1 0

4 2 1 0 0 1



R2 − 2R1, R3 − 4R1 =⇒


1 1 2 1 0 0

0 −1 −4 −2 1 0

0 −2 −7 −4 0 1



−R2 =⇒


1 1 2 1 0 0

0 1 4 2 −1 0

0 −2 −7 −4 0 1



R1 −R2, R3 + 2R2 =⇒


1 0 −2 −1 1 0

0 1 4 2 −1 0

0 0 1 0 −2 1



R1 + 2R3, R2 − 4R3 =⇒


1 0 0 −1 −3 2

0 1 0 2 7 −4

0 0 1 0 −2 1



So we have that:

P−1 =


−1 −3 2

2 7 −4

0 −2 1


Now, we expect the Jordan matrix to be composed of 2 blocks: the first block will be 1×1 and correspond
to λ = −1; the second block will be 2× 2, and correspond to λ = 0.
We can confirm this:

P−1AP =


−1 −3 2

2 7 −4

0 −2 1



1 1 −1

2 4 −3

4 8 −6



1 1 2

2 1 0

4 2 1



=


1 3 −2

0 −2 1

0 0 0



1 1 2

2 1 0

4 2 1



=


−1 0 0

0 0 1

0 0 0


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3. A (5× 5) matrix with entries in C has 2 eigenvalues: 0 and 1. How many possible JNFs (up
to re-ordering) does the matrix have?
Notice, the diagonal will always have at least one 1 or 0. In particular, the diagonal can be in one of 4
forms (up to reordering of the blocks):

• (1, 0, 0, 0, 0)

• (1, 1, 0, 0, 0)

• (1, 1, 1, 0, 0)

• (1, 1, 1, 1, 0)

There isn’t any sophisticated mathematical formulae which yields an answer; we need to be careful with
how we count.
Notice, the first 2 cases are analogous to the last 2 cases, with the 0s and 1s “flipped”, so counting the
possibilities for (1, 0, 0, 0, 0) and (1, 1, 0, 0, 0), and then multiplying by 2 gives us our answer.
For (1, 0, 0, 0, 0) the following block distributions are possible:

• 1|0000 (block of 4 zeroes)
• 1|0|000 (block of 1 zero, block of 3 zeroes)
• 1|0|0|00 (2 blocks of 1 zero, block of 2 zeros)
• 1|0|0|0|0 (4 blocks of 1 zero)
• 1|00|00 (2 blocks of 2 zeroes)

For (1, 1, 0, 0, 0) the following block distributions are possible:

• 1|1|000 (2 blocks of ones, block of 3 zeroes)
• 1|1|0|00 (2 blocks of ones, block of 1 zero, block of 2 zeroes)
• 1|1|0|0|0 (2 blocks of ones, 3 blocks of zero)
• 11|000 (block of 2 ones, block of 3 zeroes)
• 11|0|00 (block of 2 ones, block of 1 zero, block
• 11|0|0|0 (block of 2 ones, 3 blocks of zero)

Hence, we have 11 possibilities for the first 2 options. Thus, in total, we have 2× 11 = 22 possible JNFs.
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