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1 Background

The N-Body Problem considers n bodies in R3 which interact solely via gravitational forces. A solution
to the N-Body Problem will be the derivation of a set of n vector functions which describe the motion
of each of the bodies. The investigations regarding the N-Body Problem began with Newton, who
managed to solve for the motion of the Earth and the Moon. Later on, Euler (1765) and Lagrange
(1772)[1], discovered periodic solutions to the 3-Body Problem. More recently, a third periodic solution,
known as the Figure of 8 was discovered, which unlike the Euler and Lagrange orbits, is stable (that
is, doesn’t become chaotic under slight perturbations). Thus far, only the 2-Body Problem has been
solved analytically: for instances with N ≥ 3, no analytic solution has been found, and numerical
methods are used instead.

The focus of this investigation will be to use the Python programming language to investigate how
perturbations to the initial conditions of the Figure of 8 orbit affect its stability. In order to do this,
we develop numerical tools to calculate, plot and analyse the effect of perturbation. We also use the
2-Body problem to validate our code.

2 Formulating the N-Body Problem

2.1 Equations of Motion

In order to be able to solve the N-Body Problem, we first need to formulate the underlying equations
of motion. Consider n bodies which interact solely via gravitational forces. By Newton’s Law of
Universal Gravitation, given 2 bodies i and j, the gravitational force exerted on i by j is given by:

F ij = G
mimj

‖rj − ri‖3
(rj − ri) (1)

where G is the gravitational constant:

G = 6.67408× 10−11m3kg−1s−2

Furthermore, Newton’s 2nd Law of Motion expresses how the acceleration felt by an object is
dependent on its mass and the net amount of force exerted on said body:∑

F = ma

Thus, if we consider some body i, and it interacts solely gravitationally with n− 1 other bodies, it
follows that:

n∑
j=1,j 6=i

F ij = miai (2)

Now, let ri(t) denote the position of body i at some time t. Then, the velocity vi(t) and the
acceleration ai(t) of the body can be expressed as:

vi(t) = ṙi(t)

vi(t) = r̈i(t)
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Using the above alongside,(1) and (2):

miai =

n∑
j=1,j 6=i

F ij (3)

=⇒ mir̈i =

n∑
j=1,j 6=i

G
mimj

‖rj − ri‖3
(rj − ri) (4)

=⇒ r̈i =

n∑
j=1,j 6=i

G
mj

‖rj − ri‖3
(rj − ri) (5)

This differential equation is thus the one that governs the motion of the n bodies.

2.2 Conservation Equations

Since we are attempting to model a physical system (that is, n bodies orbitting gravitationally), it
is important that any solution to the set of differential equations satisfies the following conservation
laws.

2.2.1 Law of Conservation of Linear Momentum

The total linear momentum of the N-Body system is given by:

p =

1∑
i=1

mivi

2.2.2 Law of Conservation of Angular Momentum

The total angular momentum of the N-Body system is given by:

L =

1∑
i=1

ri × pi =

1∑
i=1

mi(ri × vi)

2.2.3 Law of Conservation of Energy

Since we consider moving bodies in a gravitational field, the total energy (E) must be the sum of
kinetic (EK) and gravitational potential energies (GPE).

EK =
1

2

n∑
i=1

mi‖vi‖2 =
1

2

n∑
i=1

‖p
i
‖2

mi

GPE = −G
∑

1≤i<j≤n

mimj

‖rj − ri‖

E = EK +GPE

2.2.4 Conservation of Centre of Mass Position and Velocity

The centre of mass (COM) of the system is:

R =

∑
i=1miri∑n
i=1mi

which moves with velocity:

V =
p∑n

i=1mi
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It is particularly useful to consider a system in which the COM is the origin of the coordinate system,
which can be achieved via the following change of coordinates to each of the bodies:

r∗i = ri −R

v∗i = vi − V

Under such a transformation we expect that in the calculated solution:

R = 〈0, 0, 0〉

p = 〈0, 0, 0〉

2.3 Numerical Integration

As discussed above, in order to solve the ODE in (5), we rely on numerical integration. Overall, we
considered 5 numerical integrators.

When discussing numerical integrators, it is important to distinguish between symplectic and non-
symplectic integrators, alongside time-reversible and non-time-reversible integrators.

In simple terms, a symplectic integrator is one which will, in particular, preserve the energy of the
physical system on which it is applied. A time-reversible integrator is one that not only works in the
forward direction (from time t you can calculate quantitites at time t + 1), but also in the backward
direction (from time t+ 1 you can calculate quantities at time t).

Lastly, the order of an integrator is a measure of the accuracy of an integrator, in terms of the
time step used by the integrator. For example, if an integrator uses a time step of ∆t, then the error
in the numerical approximation can be expressed, using asymptotic notation, in the form O(∆tn). A
numerical integrator with error O(∆tn) is said to be of nth order. Thus, the higher the order of a
numerical integrator, the more accurate its approximation.

2.3.1 Formulating the N-Body Problem for Numerical Integration

In general, numerical integration seeks to solve first order ODEs, of the form:

dy

dt
= f(t, y)

The issue here is that the ODEs derived in (5) are second order:

r̈i =

n∑
j=1,j 6=i

G
mj

‖rj − ri‖3
(rj − ri)

However, we can transform these 3 second order differential equations, into a set of 6 first order
differential equations. We can calculate the acceleration of a body by just using its position. Since
acceleration is the derivative of velocity, in particular we have:

r̈ = f(t, ṙ)

which can be solved numerically. Similarly, velocity is the derivative of position, so:

ṙ = f(t, r)

Thus, we can find r(t) by applying numerical integration twice: firstly to solve for velocity, and secondly
to solve for position.
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2.3.2 Euler Method

Euler’s Method is a first order, non-symplectic, non-time-reversible integrator, given by the recursion:

r̈i,t = ai,t = G

n∑
j=1,j 6=i

mimj

‖ri,t − rj,t‖3
(rj,t − ri,t)

ṙi,t+1 = vi,t+1 = vi,t + ai,t∆t

ri,t+1 = ri,t + vi,t∆t

2.3.3 Euler-Cromer Method

The Euler-Cromer Method is a first order, symplectic, non-time-reversible integrator, given by the
recursion:

r̈i,t = ai,t = G

n∑
j=1,j 6=i

mimj

‖ri,t − rj,t‖3
(rj,t − ri,t)

ṙi,t+1 = vi,t+1 = vi,t + ai,t∆t

ri,t+1 = ri,t + vi,t+1∆t

2.3.4 2-Step Leapfrog

The 2-Step Leapfrog Method is a second order, symplectic, time-reversible integrator, given by the
recursion:

r̈i,t = ai,t = G

n∑
j=1,j 6=i

mimj

‖ri,t − rj,t‖3
(rj,t − ri,t)

ṙi,t+ 1
2

= vi,t+ 1
2

= vi,t− 1
2

+ ai,t∆t

ri,t+1 = ri,t + vi,t+ 1
2
∆t

where to initialise vt, 12 , we can use the Euler or Euler-Cromer method for 10 iterations.

2.3.5 Synchronised Leapfrog

The Synchronised Leapfrog Method is a second order, symplectic, time-reversible integrator, given by
the recursion:

r̈i,t = ai,t = G

n∑
j=1,j 6=i

mimj

‖ri,t − rj,t‖3
(rj,t − ri,t)

ri,t+1 = ri,t + vi,t∆t+
1

2
ai,t∆t

ṙi,t+1 = vi,t+1 = vi,t +
1

2

(
ai,t + ai,t+1

)
∆t
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2.3.6 3-Step Leapfrog

The 3-Step Leapfrog Method is a second order, symplectic, time-reversible integrator (derived from
the Synchronised Leapfrog):

r̈i,t = ai,t = G

n∑
j=1,j 6=i

mimj

‖ri,t − rj,t‖3
(rj,t − ri,t)

ṙi,t+ 1
2

= vi,t+ 1
2

= vi,t +
∆t

2
ai,t

ri,t+1 = ri,t + ∆tvi,t+ 1
2

ṙi,t+1 = vi,t+1 = vi,t+ 1
2

+
∆t

2
ai,t+1

2.3.7 Adaptive Timestep

Whilst the above formulations typically used a fixed timestep, upon running some simulations, it soon
became apparent that, as soon as the bodies sped up/got too close to each other, the constant time
step led to errors. In order to mitigate this, an adaptive time step can be used. That is, at each
integration step, use a time step which varies as a function of the position and velocity of the bodies
in the simulation. We defined the adaptive time step at any particular step as:

∆t = c× min
1≤j<i≤n

{
∆xij
∆vij

}
where, c is a constant, and for any 2 bodies i and j, ∆xij corresponds to the distance between the
bodies, and ∆vij corresponds to the difference in speed between the bodies. Then, if the bodies go
too close together, or they move at great speeds, the adaptive time step will be smaller, allowing for
more accurate calculations. Similarly, for bodies far apart, or moving with small speeds, larger time
steps won’t heavily impact accuracy.

2.3.8 Time Reversibility

Whilst the adaptive time step can solve the issue of energy loss, it introduces a new issue: loss of
symplecticity. This is caused by the fact that in using an adaptive time step, time-reversibility is lost.
It is important to note that the Synchronised Leapfrog can’t be used with an adaptive timestep, as it
loses its symplecticity[2].

In order to preserve symplecticity and time-reversibility, the following modification can be used
when using an adaptive timestep. At time t, calculate the timestep:

∆tt = c× min
1≤j<i≤n

{
∆xij,t
∆vij,t

}
Using ∆tt, apply an integration step to obtain new positions and velocities at time t+ 1. Using these
newly calculated values, compute the adaptive timestep at time t+ 1:

∆tt+1 = c× min
1≤j<i≤n

{
∆xij,t+1

∆vij,t+1

}
Then, for time t, use the timestep given by:

∆t∗ =
∆tt + ∆tt+1

2

This ∆t∗ is now symmetric in the forward and backward time directions.
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2.3.9 Integrator Used

Throughout the rest of the investigation, we decided on using the 3-Step Leapfrog. Firstly, being
second-order we could use larger time steps to obtain fairly accurate orbits. Moreover, it is much
simpler to initialise than 2-Step Leapfrog (requiring integration steps to initialise vi,t+ 1

2
), and it can

use adaptive time step (unlike Synchronised Leapfrog).

3 Periodic Solutions to the 3-Body Problem

As discussed above, there are 3 well-known periodic solutions to the 3-Body Problem: the Euler
Orbit, the Lagrange Orbit and the Figure of 8 Orbit. In order to investigate solution stability, it was
important to be able to derive the initial conditions under which the Euler and Lagrange solutions
arose (Figure 8 initial conditions were found online).

At the start, we aimed to use the ODEs that defined the general motion of the 3-Body problem
to, by using certain properties of the configurations, find the initial conditions/solutions. Clearly, this
wasn’t going to work, especially since to find analytic solutions we would need the initial conditions
that I was seeking.

We then chose to use the fact that the solutions perform circular orbits, to see that in such orbits,
we must have that the centripetal force (FC,i) of any particular body must be precisely equal to the
gravitational force (FG,i) exerted by the other 2 bodies. Thus, for any particular body:

FC,i = FG,i

=⇒ − mi‖vi‖2

‖ri‖2
ri = G

mimx

‖rx − ri‖3
(rx − ri) +G

mimy

‖ry − ri‖3
(ry − ri)

=⇒ − ‖vi‖
2

‖ri‖2
ri = G

mx

‖rx − ri‖3
(rx − ri) +G

my

‖ry − ri‖3
(ry − ri)

Lastly, for simplicity, we can assume that all bodies are unit masses. We thus get:

− ‖vi‖
2

‖ri‖2
ri =

G

‖rx − ri‖3
(rx − ri) +

G

‖ry − ri‖3
(ry − ri) (6)

This means that (after some rearranging) we can obtain an expression for ‖vi‖ purely in terms of the
positions of the 3 bodies (ri, rx, ry). Moreover, since we know that vi must be perpendicular to ri in
circular motion, then we can easily find vi:

vi = ‖vi‖
ri ⊥
‖ri ⊥ ‖

Since we are considering orbits on an xy plane, then:

ri = 〈rx, ry, 0〉 =⇒ ri ⊥= 〈ry,−rx, 0〉

where we have chosen ri ⊥ so that it induces clockwise motion.

3.1 Euler Orbit

Consists of 3 co-linear bodies, with 2 external bodies orbiting a stationary, central one. Let r1 be the
position vector of the central body, with r2 and r3 being the position vectors of the other 2 bodies.
Then, we can assume:

r1 = 0

r2 = −r3
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v2 = −v3
Using (6), alongside the assumptions:

− ‖v2‖
2

‖r2‖2
r2 =

G

‖r1 − r2‖3
(r1 − r2) +

G

‖r3 − r3‖3
(r3 − r2)

=⇒ − ‖v2‖
2

‖r2‖2
r2 = − G

‖r2‖3
r2 −

G

4‖r2‖3
r2

=⇒ ‖v2‖2 =
G

‖r2‖
+

G

4‖r2‖

=⇒ ‖v2‖ =

√
5G

4‖r2‖

Figure 1: The Euler Orbit. Triangles represent start position. Circles represent end position.

3.2 Lagrange Orbit

Consists of 3 evenly spaced bodies around a circular orbit, forming a triangular configuration. Under
the assumptions of equal mass, if we can find the velocity of one body, we can simply rotate the position
and velocity vectors of this body to determine the initial conditions for the remaining 2 bodies. To do

this, we consider the clockwise rotation matrix in R3:

Rθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


In particular, since the bodies will be placed at the vertices of an equilateral triangle, we require
θ = 2π

3 . Let R = R 2π
3

If we are given a body at r1, with corresponding velocity v1, then:

r2 = Rr1 r3 = R2r1 v2 = Rv1 v3 = R2v1
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From (6), we have:

−‖v1‖
2

‖r1‖2
r1 =

G

‖r2 − r1‖3
(r2 − r1) +

G

‖r3 − r1‖3
(r3 − r1)

Using our expressions for r2 and r3, we can directly calculate the RHS of the equation. In particular,
for the equality to hold, it must be the case that for some k ∈ R:

G

‖r2 − r1‖3
(r2 − r1) +

G

‖r3 − r1‖3
(r3 − r1) = kr1

with k being easy to calculate manually.

Thus:

−‖v1‖
2

‖r1‖2
r1 = kr1

=⇒ ‖v1‖ =
√
−k‖r1‖2

=⇒ ‖v1‖ =
√
−k‖r1‖

Figure 2: The Lagrange Orbit. Triangles represent start position. Circles represent end position.

3.3 Figure 8 Orbit

Consists of 3 bodies in an initially collinear configuration, with orbits “drawing” a horizontal 8. Unlike
Euler or Lagrange, the Figure of 8 orbit is stable, meaning that small perturbation in the initial
conditions don’t lead to chaotic orbits. For the Figure of 8, the initial conditions were taken from an
article online [3], with:

m1 = m2 = m3 = 1

r1 = 〈0.97000436,−0.24308753, 0〉 r2 = −r1 r3 = 〈0, 0, 0〉

v1 = −v3
2

v2 = −v3
2

v3 = 〈−0.93240737,−0.86473146, 0〉

9



Figure 3: The Figure of 8 Orbit. Triangles represent start position. Circles represent end position.

4 Stability of the Figure 8 Orbit

In order to investigate the stability of the Figure of 8, we need to be able to perturb the initial
conditions for the “standard” Figure of 8, such that all the properties of the system are maintained.
In other words, we need to determine a way of obtaining new initial conditions, such that this new
system has exactly the same values for energy, angular momentum, linear momentum, centre of mass
position and centre of mass velocity as the original system. By doing this, we can find by how much
the original system can be perturbed, before the orbits become chaotic.

4.1 Constraints To Perturb The Figure 8

We are considering a system in which the z component of every vector is simply 0. Since we have 3
bodies, this means that we will have 12 unknowns: each body has 2 position and 2 velocity components.
However, the number of equations that we can make is 8: one equation for conservation of energy,
one equation for conservation of angular momentum (orbiting in the xy-plane means total angular
momentum only has a non-zero z component), 2 equations (one for the x and one for the y components)
or each of linear momentum, centre of mass position and centre of mass velocity. If the system were
linear, then we would have an underdetermined system with no solutions. However, since not all the
equations are linear (for example, energy relies on kinetic energy, which is dependent on the square of
the magnitude of velocity), it is possible that solutions exist.

The initial approach we followed was to attempt to algebraically calculate perturbations. However,
this soon lead to problems, as perturbing a single component (for example, the x component of position
of a body) meant we had to perturb 3 other components, just to satisfy one of the conservation laws.
This made the resulting equations extremely hard to solve algebraically.

We then decided to focus more on symmetries. In particular, how total energy is calculated:

E0 = EK +GPE

The key is to notice that kinetic energy (EK) is solely dependent on velocity, whilst gravitational
potential energy (GPE) is solely dependent on position. This means that, since E0 is a constant, if we
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arbitrarily choose a value of velocity (which via symmetry and conservation of angular momentum, we
can exploit to obtain the other 2 velocities), we would have an expression for gravitational potential
energy, and thus, we’d be able to derive the position of the bodies, such that energy is conserved.

4.2 Perturbing The Figure 8

The Figure 8 consists of 3 bodies, one central, and 2 to the side. Let v∗ be the velocity of one of the
side bodies. Then, if we base ourselves on the original coordinates of the Figure of 8, we can assign:

v1 = v∗ v2 = v∗ v3 = −2v∗

These ratios were chosen in order to satisfy linear momentum and COM velocity conservation.
Then the total kinetic energy of the system will be:

EK =
m1‖v1‖2

2
+
m2‖v2‖2

2
+
m3‖v3‖2

2

=
‖v∗‖2

2
+
‖v∗‖2

2
+

4‖v∗‖2

2

= 3‖v∗‖2

Next, lets consider the gravitational potential energy. The position vectors of the 3 bodies are:

r1 = 〈x1, y1, 0〉 r2 = −r1 = 〈−x1,−y1, 0〉 r3 = 〈0, 0, 0〉

where r2 and r3 are derived due to the colinearity of the initial positions of the bodies, and satisfy
COM conservation. Using these values, we calculate the gravitational potential energy as:

GPE = −G
(

m1m2

‖r2 − r1‖
+

m1m3

‖r3 − r1‖
+

m2m3

‖r3 − r2‖

)
= −G

(
2

‖2r1‖
+

1

‖r1‖
+

1

‖r1‖

)
=
−5G

2‖r1‖

=
−5G

2
√
x21 + y21

Using the above derivations:

E0 = EK +GPE

∴ E0 = 3‖v∗‖2 − 5G

2
√
x21 + y21

=⇒ x1 =

√(
5G

2(3‖v∗‖2 − E0)

)2

− y21

Thus, given an arbitrary velocity, and an arbitrary y component of position, we can calculate the
necessary x component of position, so as to conserve total energy of the system.
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Lastly, we can show that angular momentum is also conserved. Indeed, notice that since we are
using unit masses, the linear momentum of a particle is just its velocity. Thus:

L = r1 × v1 + r2 × v2 + r3 × v3
= r1 × v∗ + (−r1)× v∗ + 0× (−2v∗)

= 0

which is the angular momentum of the original figure of 8 configuration.

4.3 Visualising Stability

4.3.1 Methodology

The methodology to test for stability was the following. Consider an n× n grid. Each element of the
grid corresponds to a nbody simulation of the Figure of 8, albeit with a small perturbation in the x
and y components of velocity (vx and vy respectively). Then, each simulation is ran for a set time,
using 3-Step Leapfrog with an adaptive time step, until one of the following happened:

• 0: Simulation Successful

• 1: Simulation Successful, but took 105 steps

• 2: Adaptive Time Step Too Small

• 3: COM Not Conserved

• 4: Body Escaped From COM

• 5: Body Collision

• 6: Figure 8 Initialisation Error

• 7: Linear Momentum Not Conserved

• 8: Angular Momentum Not Conserved

• 9: Energy Not Conserved

Notice that we have assigned a numerical value to each outcome. These can then be turned into
colours, and plotted in a grid to form an image, allowing us to establish for which values of the velocity
components the Figure of 8 is stable.

In addition to this, we can encode extra information in the image, by considering how how long a
simulation lasted before an error occurred. Thus, for any error, the assigned number was given by:

number assigned to error +

(
1− time until error

limit time assigned for simulation

)
If time until error ≥ limit time assigned for simulation, then a small amount was substracted from
their ratio, until it was below 1.

4.3.2 Changeable Parameters

The following parameters can be altered, as to investigate how they affect the stability of the orbit:

• perturb: any perturbation to vx and vy will be a multiple of perturb

• n trials: the number of times that the initial conditions are perturbed to one side of 0 (so if
perturb = 0.1, n trials = 10, then vx and vy can be perturbed by any multiple of 0.1, from -1
to 1 (inclusive))
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• collision tolerance: maximum distance between 2 bodies allowed

• escape tolerance: maximum distance away from the COM allowed

• time: desired amount of simulation time

• tolerance: the maximum error allowed for any calculation of a conserved quantity

• adaptive constant: the constant by which we multiply when calculating adaptive time step

• delta lim: the minimum value allowed for the adaptive time step

After testing, the only parameters that didn’t seem to produce interesting results were collision tolerance,
escape tolerance and tolerance, so the results produced keep these constant.

4.3.3 Speeding Up

As can be expected, a lot of computing power is required if we want to, for example, produce a sizeable
picture (large n trials), a picture with high definition (small perturb) or a picture with low energy
errors (small adaptive constant).

In order to mitigate the excessive run time, we made use of the multiprocessing module available
in Python, as to parallelise the computations, allowing us to use the 4 CPU cores in our machine.
This meant we could perform more ambitious calculations. For example, for 2 identical experiments,
except for the number of n trials, the one with n trials = 50 ran in 8 hours, whilst the one with
n trials = 25 ran in 10 hours-

4.3.4 The Baseline Grid

In order to gauge the effect of the different parameters on the stability, we decided on having a baseline
grid, from which to compare any parameter change. The grid in question was defined by the following
parameters:

perturb = 0.05, n trials = 10, collision tolerance = 10−3,

escape tolerance = 10, steps = 104, delta = 10−2,

tolerance = 10−2, adaptive constant = 0.1, delta lim = 10−5

which produces a 21 × 21 image, in which initial conditions are perturbed by any multiple of 0.1
on the range -1 to 1:
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Figure 4: The standard grid. The black area in the centre represents conditions of stability, whilst the
surrounding red/grey indicates an energy error.

we found that this was one of the regions on which perturbations lead to some stable orbits.

4.3.5 Changing perturb

Since we wanted to investigate the same area as tehs tandard grid, in modifying perturb we also
changed n trials:.
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Figure 5: 201× 201 image with perturb = 0.005, and n trials = 100.

As above, black regions represent stability, whilst red/grey regions represent energy error. By
decreasing perturb we are obtaining a higher definition image, which reveals a few interesting things.
Firstly, the stability region in the centre of the plot. As in the standard grid, stability seems to be
better conserved upon changes to vx. In particular, it is interesting to note that for negative ∆vx, the
region of stability seems to be thinner, allowing only very small perturbation in vy. However, as ∆vx
becomes positive, the range by which vy can change increases drastically.

Secondly, we can now better appreciate the patterns of red surrounding the stable region. It seems
to be enveloped in a curved, hook-like shape of red, containing a lot of very interesting patterns and
gradients of red. It is particularly noticeable that the brightest red squares are the ones directly
surrounding the stable region. These squares represent simulations in which the energy error only
occurred after 90 of the 100 desired simulation time units. This is to be expected, as these regions
correspond to initial conditions that differ from stable initial conditions by as little as 0.005.

Lastly, there are 2 other areas of the plot which were hinted to exist in the standard grid, but are now
clearly revealed. The first is the existence of black pixels in the region of around ∆vx = −0.5,∆vy = 0.1,
indicating stability for these perturbations. It could be interesting to investigate whether increasing
the limit time makes this region disappear, or whether increasing the window size will reveal a small
cluster of stability. The second region (∆vx ∈ {0.3, 0.5} and ∆vy ∈ {0, 0.2}) corresponds to a set of
bright diagonal lines, which, in particular, contain a pixel of green (body escaping from COM). This
might mean that, should the time of execution be extended, all these long, bright red regions might
lead to bodies escaping.
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4.3.6 Changing n trials

By changing n trials, we wanted to see what happens as the perturbations grow larger, obtaining
the following results:

Figure 6: 1001× 1001 image using n trials = 500 and perturb = 0.005

In the above plots, we can appreciate 2 main points of interest. Firstly, and most strikingly, is the
appearance of a circle of grey (energy not conserved), enveloped by a sea of green (failure to initialise
the Figure of 8). We believe that this can be explained by considering how the Figure of 8 is initialised
in the code. Going back to the formula:

x1 =

√(
5G

2(3‖v∗‖2 − E0)

)2

− y21

Thus, the Figure of 8 will fail to initialise, should the expression within the square root be negative.
Thus, in order to initialise a Figure of 8 according to the code, we require:(

5G

2(3‖v∗‖2 − E0)

)2

− y21 ≥ 0

Since E0 = −1.2871419917663258 < 0, 5G
2(3‖v∗‖2−E0)

> 0,∀v∗ ∈ R3. Moreover, y1 = −0.24308753 < 0.
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Rearranging the above: (
5G

2(3‖v∗‖2 − E0)

)2

− y21 ≥ 0

=⇒ 5G

2(3‖v∗‖2 − E0)
≥ |y1|

=⇒ 5G

2|y1|
≥ 3‖v∗‖2 − E0

=⇒ 5G

6|y1|
+
E0

3
≥ v2x + v2y

In other words, we get that vx and vy must be within a circle of radius 5G
6|y1| + E0

3 , centred at (vx =

0, vy = 0). Now, (v0x = 0.466203685, v0y = 0.43236573) are the velocity components of the original
Figure of 8. If we want (vx = 0, vy = 0), we then require that (∆vx = −v0x,∆vy = −v0y) ∴ (∆vx =
−0.466203685,∆vy = −0.43236573). Indeed, we see that this is the centre of the circles shown above,
and this was further confirmed via the plotting software.

Recall that in Figure 5 we noted the existence of some black, stable pixels at ∆vx = −0.5,∆vy = 0.1,
and hypothesised that they could correspond to another stability region. Indeed, we see this is the
case, as they correspond to the stability region in the top left of Figure 6.

The second point of interest in Figure 6 is the existence of 4 stability regions, which seem to have
180º rotational symmetry about the centre of the grey circle. In fact, it is not only the regions of
stability: the surround red, hook-like areas also seem to exhibit this behaviour. This, alongside the
fact the the rotation is about the centre of the grey circle, indicates that the symmetry of the 4 regions
is brought by the Figure of 8 initialisation, as opposed to being a feature of regions of stability. When
initialising a Figure of 8, the position of the 3 bodies are independent of the sign of vx and vy: y1
never changes, and we taken to choose the positive square root for x1, which relies on ‖v∗‖2. In other
words, for any initial position, the velocity v∗ can have the following components:

1. vx > 0 and vy > 0

2. vx < 0 and vy < 0

3. vx < 0 and vy > 0

4. vx > 0 and vy < 0

That is, there are 4 different initial conditions of the Figure of 8 which start in the exact same
initial position.

4.3.7 Changing steps and delta

When using non-adaptive timestep, steps and delta give the nuber of integration steps and the time
step to use for integration. For adaptive time step, the time for which the simulation should run is
given by steps× delta. Thus, altering these values will alter for how long we are calculating orbits.
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Figure 7: 21× 21 image using time = 1, 000

Figure 8: 21× 21 image using time = 10, 000

Comparing Figure 4, Figure 7 and Figure 8 it is easy to see that, by increasing time, the regions
of stability decrease, becoming barely a line by Figure 8. In fact, in Figure 8 none of the simulations
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were able to reach the target time of 10, 000 (which is expected, since at most 105 steps were allowed).
Lastly, it is important to note that the red areas surrounding the stability region progressively decrease
as the time increases, furthering indicating loss of stability as simulation time progresses.

4.3.8 Changing adaptive constant

In changing the adaptive constant we were aiming at removing the energy errors that seem to be so
omnipresent in all the above plots.

Figure 9: 21× 21 image using adaptive constant = 0.01
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Figure 10: 101× 101 image using adaptive constant = 0.01

Whilst experiments were run with adaptive constant = 0.001, the plots produced didn’t differ
much from those with adaptive constant = 0.01 (this would only happen if we altered other param-
eters, but apart from taking longer, it wouldn’t produce any new or interesting results). Comparing
Figure 4 with Figure 9, we can see that all the red pixels have been substituted by blue (adaptive
time step smaller than delta lim) and green (body escape from COM). This is to be expected, as
reducing the adaptive constant we ensure that the adaptive time step is smaller, thus allowing more
accurate orbit calculations. As a result, cases in which the bodies got too close or moved too fast,
which previously resulted in energy non-conservation, now become blue. One particular instance of
this occurs when the three bodies escape from their COM, which typically happens as a result of the
3 bodies orbiting each other very closely at high speeds, which quickly becomes unstable and leads to
the bodies shooting off into space (typically one body remains alone, and the other two form a coupled
orbit). The smaller adaptive time step is capable of integrating these situations, which results in an
exception being raised only as the bodies escape.

Another interesting comparison between 4 and Figure 9 is the fact that the stable region has
become larger in the latter, again caused by the fact that a smaller adaptive constant is capable of
more faithfully integrating the orbits, thus reducing orbit instability. This can be further seen by the
fact that there are a lot of dark blue patches, which indicate that errors arose later in the simulation.

Lastly, it is important to mention the structure of the blue circle in Figure 10. We can see the
hook-like structures from Figure 6 surrounding the stability regions, but this time coloured in dark
blue of varying tones, with some tints of green. The hook-like structures then seem to be surrounded in
green lines. Lastly, we observe a smooth, light blue region, which lies between the green lines, and some
of the hook-like structures. This reveals the “steps” in which the adaptive time step error appears, by
considering the transition between regions. In the darker regions, the error takes longer to appear: in
other words, adaptive time step is good enough at integrating these regions. This corresponds with
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what we saw in Figure 6, where these regions were red, indicating more stability than in surrounding
areas. It is important to note that the hook-like structures are much larger in Figure 10 than in
Figure 6, which as discussed above could be caused by the fact that the smaller adaptive constant
is more accurate, and can handle more chaotic situations. If we perturb sufficiently, we reach the
green lines. This means that we reach fairly chaotic initial conditions, such that in a single update
of the simulation, move too fast, leading to escape from the COM before the next adaptive time step
is calculated. Lastly, in the light blue areas, the simulation ended very close to the start, indicating
that the initial conditions lead to highly chaotic systems very soon, such that the adaptive time step
quickly became too small.

4.3.9 Changing delta lim

In changing delta lim, we wanted to see what would happen if we allow the adaptive time step to
become as small as it needed in order to integrate. Since an adaptive constant of 0.1 only had energy
errors, decreasing the delta limit would have no effect. However, when the adaptive constant was 0.01
the main error that arose was that the adaptive time step wanted to become smaller than the delta lim

of 10−5. Thus, to test the effect of changing delta lim, we chose to set the adaptive constant to
0.01.

Figure 11: 21× 21 image using delta lim = 10−6
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Figure 12: 21× 21 image using delta lim = 10−7

In these plots we observe, apart from the blacks and red/greys, the appearance of green (escape
from COM) and blues (adaptive time step too small). Since we are using an adaptive constant of
0.01, we shall compare Figures 11 and 12 to Figure 9. It is interesting to note that across these figures,
most of the blue pixels are substituted by reds/greys. This is to be expected, as a lower delta lim

means that there is more time for other errors to occur, in particular energy error. This is further
shown by the fact that by Figure 12 there is no blue left. Secondly, if we roughly compare these figures
with Figure 4, where energy error was mostly shown in grey, we observe a much higher proportion of
reds, especially as delta lim becomes smaller. Since the adaptive time step can become much smaller,
it can better handle situations in which energy was not conserved, so it will take longer until energy
error occurs. This is further supported by the fact that as delta lim becomes smaller, the number of
black pixels tends to increase, likely caused by the fact that we can now use a smaller adaptive time
step, thus we can more accurately integrate orbits, and so, regions in which integration errors lead to
instability can now be handled and calculated.

4.3.10 Visualising Stability of Stable Regions

Whilst the above indicates regions of stability, alongside regions of errors, and how unstable the error
causing initial conditions are, it doesn’t delve into the stability of the stable regions. In particular, for
the stable initial conditions, how similar are the plots that they produce to the original Figure of 8?

In order to investigate this, we first need to have a way to compare the orbits produced, and then,
we need to have a way to quantify the similarity between any orbit and the Figure of 8.

Consider a point during integration, with the 3 bodies having positions r1, r2, r3. To account for
rotations and translations, we consider relative coordinates:

R1 = r1 − r2 R2 = r2 − r3 R3 = r1 − r3
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To account for stretches, let N = ‖R1‖+ ‖R2‖+ ‖R3‖. Then, define:

X1 =
‖R1‖
N

X2 =
‖R2‖
N

Notice, there is no need to consider a third coordinate, X3 =
‖R3‖
N , as X1 +X2 +X3 = 1, so X1 and

X2 already contain all the information of X3. Overall, X1 and X2 encode information about rotation,
translation and stretches of orbits. What we can then do is, for any orbit, compute the set of X1 and

X2 of each of the positions of the orbit. These X1 and X2 can then be plotted in a grid of squares,
drawing a curve. In order to gauge the similarity of an orbit to the original Figure of 8, we can count
the number of grid squares through which the resulting curve passes. Call this the stability score. If
an orbit has a similar stability score as the Figure of 8, then we can assume that they are similar. For
example:

Figure 13: The original Figure of 8, with stability score of 125

Figure 14: To the left, orbit with high stability score (710); to the right, orbit with low stability score
(250). We can see the latter is more similar to the original Figure of 8.

We can incorporate the stability score into the grid, by normalising it between 0 and 1. Then,
Figure 5 becomes:
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Figure 15: 201× 201 image with perturb = 0.005 and n trials = 100, and displaying stability score

In the above, the darker the region the more similar to the original Figure of 8 it will be. As
discussed above, we observed that the stable region seems to be more stable when pertubing vx.
Figure 15 further confirms this: changing ∆vy by very little is sufficient to disfigure a Figure of 8,
whilst changes to ∆vx tend to more easily preserve the original shape.

5 Conclusion

Overall, this project aimed to develop the necessary tools to investigate and analyse the effect of
perturbation on the stability of the Figure of 8. We derived the ODEs that govern the motions of
bodies which interact via gravitation. In order to numerically solve these ODEs, we developed Python
code, and implemented 5 numerical integrators. For the investigation, the 3-Step Leapfrog was utilised,
as it was second order, symplectic, and more versatile than 2-Step Leapfrog and Synchronised Leapfrog.
To validate the code developed, the 2-Body Problem was used, as it has known solutions which can
be easily checked against. Once we developed the tools necessary to work with the N-Body Problem,
we focused on deriving initial conditions for 3 periodic orbit instances of the 3-Body Problem: Euler,
Lagrange and the Figure of 8. We decided to focus on investigating the stability of the Figure of 8, the
only stable orbit out of the 3 periodic orbits. In order to do this, we considered how to develop initial
conditions that would lead to systems with the same physical properties as the Figure of 8. Then, we
used this to develop perturbed versions of the Figure of 8, and investigated how different parameters
affect the stability of the resulting systems.

We found that the Figure of 8 seems to be particularly stable when vx is perturbed. Perturbing vy
typically leads to errors, particularly when ∆vx < 0. We also observed that there seem to be 4 stability
region, which have 180º rotational symmetry, which we conjecture is caused by how we calculate the
initial conditions of the perturbed Figure of 8. Surrounding the stable regions, we can see that initial
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conditions tend to be quite stable. Strangely enough, this manifests in the form of hook-like structures
that tend to be more stable than their surroundings, and also showcase the 180º rotational symmetry.
Due to how the initial conditions are initialised, the perturbed velocities must satisfy an inequality,
meaning that any “allowed” set of perturbed velocities must lie within a circle, as otherwise the Figure
of 8 won’t be initialised. Stability seems to be very affected by how long the simulation runs for, with
stability regions decreasing in size, and surrounding areas becoming more chaotic. Furthermore, by
decreasing the adaptive time step (either by decreasing adaptive constant or delta lim), we observe
that stability regions tend to increase in size, with errors appearing much later on in the simulation,
caused by the fact that smaller adaptive time steps lead to more accurate calculations, less prone to
small integration errors, and allowing simulations to run for longer.

In general, we attempted to derive conclusions from the results observed. Due to time constraints,
some of these results couldn’t be verified experimentally. Nonetheless, this provides opportunities for
further investigation. Perhaps the most interesting can be what causes the 180º rotational symmetry
which is apparent in images such as Figure 6, what causes the hook-like structures and the red “tendrils”
surrounding the stable regions in Figure 6, or what could be causing the patterns observed in Figure
10. Further images could be developed focusing on certain regions, such as the “vertices” of Figure
5 or the lines/tendrils present within the hook-like structures of Figure 6, which could reveal fractal
behaviour. Lastly, Fourier transforms, alongside action minimisation could be employed to discover
new stable, periodic orbits to the 3-Body Problem (or even for the 4 or 5-Body Problem).
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