
Deep Contrastive Learning for Feature
Representation in Historical Maps

Antonio León Villares
T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2023

Abstract
Physical sources of knowledge, such as historical maps, have been increasingly digitised,
making them more available to the wider public. However, investigating certain features
within these maps remains challenging, particularly if there are a lot of maps. In this
project, I investigate how contrastive learning can be used to not only find common
features across maps from different time periods, but to numerically score the degree of
similarity between these features. Through contrastive learning, I convert patches from
maps into vectorised representations in some latent space. These representations can
then be used to compute a similarity score between patches, with which the most similar
patches can be found, thus allowing a quick and efficient search of specific features
across many maps. I develop a novel way of evaluating the capacity of contrastive
models to identify positive pairs correctly. Moreover, I employ proxy tasks to better
understand how the representations learnt by 2 different contrastive models encode these
features. I found that using SimCLR leads to more discriminative representations, which
are better at finding patch pairs containing the same set of features. Meanwhile, BYOL
learns representations which are more semantic in nature, and thus can be useful to more
broadly explore feature combinations across maps. Finally, I propose a new contrastive
framework, GeoSimCLR, aimed at encoding both visual and contextual similarity. I
compare this with SimCLR and BYOL by using clustering, which helps reveal how the
representations are structured in latent space.

i

Contents

1 Background 1
1.1 Motivation . 1
1.2 Related Work . 2

1.2.1 Deep Learning and Maps . 2
1.2.2 Contrastive Learning . 2
1.2.3 Contrastive Learning for Geographical Tasks 3

1.3 Goal and Contributions . 4
1.4 Report Structure . 4

2 Model Architectures 5
2.1 Contrastive Learning . 5
2.2 Models for this Project . 5

2.2.1 SimCLR . 6
2.2.2 BYOL . 7
2.2.3 Project Models . 8

3 Data 9
3.1 Obtaining Historical Maps . 9
3.2 Generating Data for Training . 11

3.2.1 Preprocessing the Maps . 11
3.2.2 Finding Maps of the Same Region 13
3.2.3 From Maps to Patches . 13
3.2.4 Generating Datasets from Maps 14
3.2.5 Splitting the Dataset . 16
3.2.6 Using Larger Patches . 17

4 Methodology and Results 18
4.1 Training the Models . 18

4.1.1 Hyperparameters . 18
4.1.2 Training Procedure . 19

4.2 Positive Pair Identification Tasks . 19
4.2.1 Problem Setup . 19
4.2.2 Tasks Considered . 20
4.2.3 Results . 20
4.2.4 Applicability of Results . 21
4.2.5 Visualising Similarity Scores 23

iv

4.3 Exploring Encoded Features . 25
4.3.1 Classification Tasks . 25
4.3.2 Invariance Under Transformations 28

4.4 Geographical Awareness . 29
4.4.1 Geographically-Aware Representations 29
4.4.2 Clustering . 33

5 Discussion and Conclusions 38
5.1 Main Conclusions . 38
5.2 Future Work . 39

A Additional Work 45
A.1 Aligning Maps of the Same Region from Georeference Information . 45
A.2 Aligning Maps at the Patch Level . 46
A.3 Aligning OS Maps with Bartholomew Maps 48
A.4 Modifying Representations Through Learning Task 49

B Maps and Metadata 51
B.1 GeoJSONs . 51

B.1.1 GeoJSON Containing Full Map Region 51
B.1.2 GeoJSON of Overlapping Bounding Boxes 52

B.2 Code for Rotating and Cropping the Badly Scanned Maps 54
B.3 Metadata Table Columns . 56
B.4 Code for Removing Uninformative Patches 56

C Experimental Results 58
C.1 Estimate for Runtime . 58
C.2 All Experiments Run . 58
C.3 Losses for Experiments . 59

C.3.1 BYOL . 59
C.3.2 SimCLR . 60

C.4 Results for Experiments Run Longer 60
C.4.1 Training Results . 60
C.4.2 PPIT Results . 60

C.5 Deriving Automatic Thresholds for Information Awareness 60
C.6 Transformations Applied . 61

C.6.1 Rotation (30°) . 61
C.6.2 Horizontal Flip . 62
C.6.3 Random Rotation (90°, 180°, 270°) 62
C.6.4 Random Crop (64→64) . 62
C.6.5 Centre Crop (64→64) . 62
C.6.6 Gaussian Blur . 63
C.6.7 Colour Jittering . 63
C.6.8 Grayscaling . 63

C.7 Clustering Results . 63
C.7.1 Settings for UMAP . 63
C.7.2 Settings for HDBSCAN . 64

v

C.7.3 Clustering on Validation Data 65
C.7.4 Cluster Similarities Using 100 Features 65
C.7.5 Cluster Examples . 66
C.7.6 Score Distributions for All Clusters 71
C.7.7 Clusters for Regions from GeoSimCLR Representations 73
C.7.8 Similarity Score Matrices for Region Patches from GeoSimCLR

Representations . 76
C.7.9 Map Segmentation Through Clustering 77

D Understanding Similarity Distributions 80
D.1 Similarity Score Distributions . 80

D.1.1 BYOL . 80
D.1.2 SimCLR . 83
D.1.3 Weighted GeoSimCLR . 86

D.2 Most Similar Patches . 87
D.2.1 SimCLR and BYOL . 87
D.2.2 GeoSimCLR . 97

vi

Chapter 1

Background

1.1 Motivation

With the rise of technology, we have been able to digitise physical sources of knowledge,
both textually (books, manuscripts, plays) and visually (images, maps, sketches). Being
able to efficiently understand, explore and analyse these digitised sources is particularly
critical, should we want to gain important historical knowledge. This is especially
true for historical maps, as they contain a plethora of information showcasing how
human settlements have varied over time. However, for highly detailed maps, manually
searching for changing features is arduous, especially if we want to comprehensively
study these changes not only over different time periods, but also using information
present from different map styles. Nonetheless, doing so automatically is also highly
non-trivial: a system would need to be capable of understanding the difference between
permanent features (such as buildings, roads and rivers) and dynamic features (such as
text labels, shadings and legend style).

To this end, I believe that deep learning is a sensible way of tackling such a problem,
given its demonstrated capacity over the last few years to automatically learn key
attributes in images. In particular, in this project I seek to learn common features across
temporally-spaced maps from the NLS (National Library of Scotland) through the use
of contrastive learning (CL). This technique allows us to translate the notion of image
similarity to similarity in some latent representation space, which can be leveraged
to explore shared features across different maps. Whilst simpler methods could be
employed to extract and compare these features, CL architectures are trained with the
objective of assessing the degree of similarity between different images. Lastly, I have
taken this as an opportunity to compare the types of attributes which are learnt by two
different contrastive methods, not only by seeing how these methods score similarity
between regions, but also by employing the latent representations in downstream tasks.

1

Chapter 1. Background 2

1.2 Related Work

1.2.1 Deep Learning and Maps

Different deep learning techniques have been employed on maps, particularly for
text/object detection. The work by Hosseini et al. [1] is of particular relevance, since
they used historical maps from the NLS to develop a deep learning, computer vision
library. One of their aims was to, for example, identify railways in these maps, for which
they used a ResNet [2] (Residual Neural Network), trained on augmented versions of
patches taken from the maps, for classification (admittedly with around 30 million, very
high resolution patches - this might go beyond the scope and computational capacity
of this project). They also deal with false positives by gauging contextual information
(if a railway was found in an “isolated” patch, this is probably a misclassification).
Post-processing steps such as these, which exploit the rich contextual information of
maps, could be a useful technique to improve the learnt representations. Another very
interesting technique which they apply is that, alongside the patch, they provide a larger
“contextual” patch (containing the patch used for classification). Information from the
patch and its context can then be used to train a more powerful model. Maps from the
NLS have been used in a variety of other publications and projects. For instance, Li [3]
applied a CycleGAN [4] to convert OpenStreetMap [5] images into the style of historical
maps. Li et al. [6] worked on using OCR, alongside deep neural networks, to extract
text from historical maps (amongst which were some from the NLS), and use this to
generate meta-labels for the maps, by using geolocation based on the extracted text. In
fact, extracting text has been the focus of many map-related projects. In this dissertation
by Kai Williams, they developed deep learning models for extracting symbols (i.e trees)
and text from the historical maps provided by the NLS.

1.2.2 Contrastive Learning

CL is a form of self-supervised learning (SSL), whereby a model only has access to
unlabelled, training data, which it uses to derive labels/representations that can then be
used to tackle a downstream supervised or unsupervised task. In this regard, SSL is a
crucial technique, since data labelling is a time-intensive and expensive process [7].

Whilst CL has applications in other fields, it has been employed extensively in computer
vision tasks, where learning and representing visual similarity might be critical. CL
algorithms generally follow a similar workflow. We start with raw, unlabelled images,
which are augmented (using a range of transformations, such as cropping, resizing,
noise addition, blurring, colour jittering) to generate what are known as positive and
negative training pairs. Positive pairs correspond to two different augmentations of
the same image, whilst negative pairs are augmentations of different images. The
contrastive algorithm learns to think of positive pairs as similar, whilst also learning to
think of negative pairs as dissimilar. Generating a good set of positive-negative pairs
is crucial for learning useful, contrastive representations, so special care needs to be
taken when generating them. For instance, if the positive and negative pairs are easily
identifiable as dissimilar, the algorithm might default to learning extremely simple
representations, which don’t capture the nuanced features that characterise a particular

https://geo.nls.uk/mapdata2/temp/Kai_Williams_FinalDisseration.pdf

Chapter 1. Background 3

input image [8]. After the positive and negative pairs have been generated, they get
passed through the contrastive model, and converted into a vector representation in
latent space. The loss for contrastive models encompasses both the level of similarity
between positive pairs, alongside the level of dissimilarity between negative pairs.
This similarity/dissimilarity is typically defined by the cosine distance of the latent
representations, and can be incorporated into the loss in a variety of ways, such as max
margin contrastive loss [9], triplet loss [10], n-pair loss (which generalises triplet loss)
[11], InfoNCE [12] and NT-Xent Loss (normalised temperature-scaled cross-entropy)
[13]. The most well-known CL architectures by far are SimCLR [13], MoCo [14] and CPC
[12], which were able to attain nearly supervised-level Top-1 accuracy on ImageNet
[13]. More recently, BYOL [15] was released, which revolutionised the CL paradigm by
removing the need for negative samples, whilst obtaining better results than all of the
aforementioned methods.

Due to the versatility of CL, it has been employed in a plethora of practical applications
beyond benchmarking on ImageNet [16]. Medicine has greatly benefited from CL,
since human annotated medical images (X-rays, MRIs, CT-Scans, etc...) are scarce
[17] [18] [19] [20]. For instance, CL can be applied to obtain better data efficiency in
downstream classification tasks, which is particularly important when data is scarce [17].
Furthermore, Chaitanya et al. [20] describes a novel contrastive approach, whereby the
contrastive loss is derived by using both global and local features of an image. CL can
also be applied beyond the world of images, since it provides a general framework to
capture underlying features, which can act as signals. As such, contrastive approaches
have been used to develop recommender systems [21], or to represent videos [22], by
encoding temporal information between frames.

1.2.3 Contrastive Learning for Geographical Tasks

It is first important to address the fact that many of the CL frameworks described above
employ a ResNet as an encoder to convert the unlabelled images to latent representa-
tions. ResNets have also been used for identifying land usage (e.g. is it residential,
industrial, agricultural, are there lakes, etc...) from satellite images [23], which indicates
its power as an encoder for geographical tasks. However, as demonstrated in Chiang
et al. [24], there are many challenges to address when applying a deep Convolutional
Neural Network (CNN) [25] (such as a ResNet) to encode images of historical maps.
This is due to the unique nature of maps, which provide a simplified representation of
reality. As such, features such as roads, mountains and buildings are represented in a
very simplistic manner, as groups of lines. Extracting features from these representa-
tions can thus be harder than when faced with the typical images of ImageNet, where
for each label there are a variety of well-defined, easily-identifiable features. Moreover,
this simplicity means that a model can more easily pick up on incorrect features (for
example, if a patch of a map cuts off a section of a river, for a CNN to identify this
correctly will be particularly hard, since it could also be a section of a house). This
is particularly the case when small, low-resolution patches are used; for larger, high-
resolution patches, ResNets should be powerful enough to easily identify the presence
of certain features, since such patches inherently contain a lot more information which
is harder to misinterpret.

Chapter 1. Background 4

To the best of our knowledge, CL has never been used to learn map representations.
However, there have been some uses of CL in geographical applications, particularly
from satellite data. Agastya et al. [26] adapted the SimCLR architecture to learn rep-
resentations of images in BigEarthNet-S2 [27], to then be used for determining the
presence of irrigation in images. Perhaps most relevant to the project at hand is the
recent work by Ayush et al. [28], who modified the MoCo architecture to generate what
they called a geography-aware model. They trained 2 models on 2 datasets (a subset
of ImageNet with geo-tagged metadata, and the remote sensing dataset fMoW (Func-
tional Map of the World) [29])). The fMoW dataset is of interest because it contains
temporally spaced images; this is analogous to the case described here, where we have
temporally-spaced and stylistically spaced map images. The authors incorporate these
temporal differences to generate positive training pairs within their loss. In addition to
generating representations, they also train the model to predict the geo-location of the
images. In doing this, they are able to significantly reduce the gap between supervised
and SSL performance in a downstream classification task, when compared with the
standard MoCo architecture. This indicates that using temporal data as “augmentations”,
alongside training the model to output metadata on the image can be used to bridge the
unavoidable gap between supervised and self-supervised performance.

1.3 Goal and Contributions

The goal of this project is to learn representations for historical maps, which can be
used to numerically score the degree of similarity between regions, and thus provides an
effective way to query different maps in the search for regions with a certain combination
of features. To this end, I seek to train 2 different contrastive models, namely SimCLR
and BYOL. To evaluate these models, I propose a set of tasks, known as Positive Pair
Identification Tasks. To the best of our knowledge, CL has never been applied for
this purpose. Furthermore, I use this as an opportunity to systematically compare
the latent representations learnt by the two models. To do this, I explore the degree
to which temporal and content information are encoded within these representations.
Furthermore, I analyse the effect that different augmentations have on the contrastive
similarity scores. Lastly, I develop a new contrastive framework, aimed at encoding both
visual and contextual similarity, whose representations I explore by applying clustering.

1.4 Report Structure

I begin this report by explaining the objective of CL, followed by a short explanation
on the SimCLR and BYOL architectures, and how I have adapted them for this project.
Afterwards, I explain the data processing pipeline: how I obtained the maps, how they
were pre-processed, and how the final dataset was generated for training the contrastive
models. Finally, I showcase how the models have been employed, by explaining the
experiments performed, the results obtained, and the subsequent conclusions that can
be drawn.

Chapter 2

Model Architectures

2.1 Contrastive Learning

Contrastive learning is a learning paradigm by which a model learns to gauge the
similarity or dissimilarity between pairs of data points, in a completely self-supervised
manner. More explicitly, say we have a set X of objects (typically images). In contrastive
learning, we learn a function f which maps elements in X to some D-dimensional latent
space:

f : X ↑ RD, D ↓ N
This is done in such a way, so that for some similarity function:

sim : RD →RD ↑ R

if x1,x2 are similar in X (that is, they form a positive pair), their embeddings f (x1), f (x2)
will be similar in latent space (according to sim); if on the other hand x1,x2 form a
negative pair in X , this dissimilarity should also be reflected in latent space.

The most common similarity measure employed in the literature is cosine similarity.
Given 2 embeddings in latent space z1,z2 ↓ RD, their cosine similarity is given by:

sim(z1,z2) =
zT

1 z2
↔z1↔2↔z2↔2

↓ [↗1,1]

where zT
1 z2 is the standard dot product, and ↔ · ↔2 is the (Euclidean) L2 norm. This

similarity is nothing but the cosine of the angle between z1 and z2, whereby perfectly
similar vectors are such that sim(z1,z2) = 1, whilst perfectly dissimilar vectors are such
that sim(z1,z2) =↗1.

2.2 Models for this Project

For this project I compared the performance of 2 common contrastive architectures,
SimCLR (Simple Contrastive Learning of Representations) and BYOL (Bootstrap Your
Own Latent). I first provide a general overview, and then explain how I have adapted

5

Chapter 2. Model Architectures 6

them to fit the objectives of this project. Lastly, I have deviated slightly from the
notation employed by the original SimCLR and BYOL papers, in order to make the model
descriptions more homogeneous and comparable.

2.2.1 SimCLR

2.2.1.1 Model Architecture

SimCLR learns a representation for an input x, by minimising the contrastive loss between
2 augmentations of x. More specifically, given a set of transformations T , one samples
2 transformations t1 ↘ T and t2 ↘ T . These include colour jittering, random cropping
with flipping (followed by resizing), and random cropping (however, in the original
paper they explored the effect of many other transformations, such as random rotations
or sobel filtering). t1 and t2 are applied to the input to generate augmented views x1,x2,
which are treated as similar. The augmented views are passed through an encoder f ,
which generates representation vectors in latent space, z1 = f (x1),z2 = f (x2). These
representations are projected by a projection head g into some other space, where
the contrastive loss is actually computed. Nonetheless, the output of the model (the
embedding) will be the representation in latent space before passing it through g, since
they found that this provided better representations. In the original SimCLR (and in most
papers utilising this model), f is a pretrained ResNet50 model. However, instead of
using the full network, they take the output of the network at its penultimate layer, which
is an average pooling layer. Moreover, the projection head g is a simple multilayer
perceptron (MLP), with a single hidden layer and ReLU activation.

x

x1 x2

z1 z2

q1 q2

t1 ↘ T t2↘
T

f (·) f (·)

g(·) g(·)

Maximise Agreement

Latent Representation

Figure 2.1: Sketch of the SimCLR architecture, adapted from Figure 2 in the original
SimCLR paper.

2.2.1.2 Loss

SimCLR uses NT-XENT as its contrastive loss, as introduced by Sohn [30]. This loss
adapts categorical cross-entropy loss, where the contrastive objective is framed as a
multi-class classification problem. In particular, this loss seeks representations, such
that positive samples have maximised similarity (according to cosine similarity), whilst
negative samples have maximised dissimilarity. Given a minibatch of N positive pairs,
each positive pair will use the remaining N ↗1 pairs as negative pairs. In particular, if I
define:

sim loss(a,b) = exp
(
sim(a,b)

!

)

Chapter 2. Model Architectures 7

the loss for the ith image zi in the minibatch will be:

ωi =↗ log
sim loss(zi

1,z
i
2)

∀N
k=1 k ≃=i

(
sim loss(zi

1,z
k
1)+sim loss(zi

1,z
k
2)
)

↗ log
sim loss(zi

1,z
i
2)

∀N
k=1 k ≃=i

(
sim loss(zi

2,z
k
1)+sim loss(zi

2,z
k
2)
)

where sim is cosine similarity, [k ≃=i] is an indicator function (evaluates to 1 if and only if
k ≃= i) and ! is a temperature parameter, which modulates the degree of similarity which
I want to assign to positive and negative pairs. A higher ! will decrease the similarity
terms in the NT-XENT loss, which pushes the model to increase its discriminative
power in order to minimise the loss. This means that negative samples will be pushed
further apart in representation space, which makes distinguishing between positive and
negative pairs easier.

2.2.2 BYOL

2.2.2.1 Model Architecture

Unlike with SimCLR, BYOL doesn’t require negative pairs to learn a representation. To
do this, it defines 2 networks: an online network with parameters #, and a target network
with parameters ∃. Critically, ∃ is computed as an exponential moving average of #, and
is thus not trained. In particular, for some target decay rate ! ↓ [0,1]

∃ ⇐ !∃+(1↗ !)#

BYOL solely trains #, with the purpose of using the online network to predict the output
of the target network. To this end, the online network is defined by an encoder f# (which
converts the input image into a vector), a projector g# (which projects the encoded
vector into some other space) and a predictor h# (which predicts the output vector of
the target network from the projected vector). The target network only has an encoder
f∃ and a projector g∃. As above, an input image x is augmeneted to produce a positive
pair; the first augmentation x1 is passed through the online network, whilst the second
augmentation x2 is passed through the target network. As with SimCLR, once # has been
trained, we only keep f# to convert an image into its contrastive embedding. Moreover,
the encoders f#, f∃ are also residual networks, whose output will be the final average
pooling layer. The projectors g#,g∃ are also MLPs, with a single hidden layer and RELU
activation, but unlike with SimCLR, BYOL employs batch normalisation. The predictor
h# uses the same architecture as g#.

x

x1

x2

z1

z2

q1

q2

q̂2
t1↘

T

t2 ↘ T

f#(·)

f∃(·)

g#(·)

g∃(·)

h#(·)

Maximise
AgreementLatent Representation

Figure 2.2: Sketch of the BYOL architecture, adapted from Figure 2 in the original BYOL
paper.

Chapter 2. Model Architectures 8

2.2.2.2 Loss

Since BYOL requires no negative pairs, and it frames its contrastive problem as a
prediction problem, the loss will be the MSE (mean square error) between q̂2 and q2
(after they have been normalised to unit vectors). Moreover, since the architecture is
asymmetric, we do a second pass through the network, but this time with x2 going
through the online network and x1 going through the target network. Given the ith
image zi in a minibatch of N elements, this is nothing but:

ωi = 4↗2
(
sim(qi

2, q̂
i
2)+sim(qi

1, q̂
i
1)
)

where sim is once again cosine similarity.

2.2.3 Project Models

The main difference between my approach and the original SimCLR/BYOL implemen-
tations, is that I don’t apply any direct data augmentation to generate positive pairs.
Instead, much like in the work by Ayush et al. [28], I use temporally-spaced images
of historical maps. Due to the time differences, general structure in the images is pre-
served, but there are certain stylistic changes, such as differences in colour, positioning
of legends, legend style, building shading, and so on. I believe that these differences are
substantial enough to be considered augmentations, which is why no further processing
was performed on these images.

I implemented all the models used in this project (except for the ResNets) from scratch
using PyTorch [31]. Whilst there are many implementations of BYOL and SimCLR
available online, I wanted to construct a consistent API for the models to make model
training and comparison simpler. Beyond this, due to memory constraints I decided
to not use ResNet50, and instead opted to consider ResNet18 and ResNet34 (I used
the architectures and pretrained weights available from PyTorch: https://pytorch.
org/hub/pytorch_vision_resnet/). Note that when using ResNets, images have
to be resized to have dimension 224→224, and then normalised in a per-channel basis
using:

µ = [0.485, 0.456, 0.406] % = [0.229, 0.224, 0.225]

Furthermore, I wanted to see the effect on learning of using a simple CNN encoder, so
somehow following the style of the ResNet encoders, I defined a CNN model which used
5 convolutional layers, with ReLU activation, batch normalisation and max pooling.
After the final convolutional layer, average global pooling was applied to generate
the encoder output. When using ResNets, I followed the implementation details for
SimCLR and BYOL, and used the output of the final global average pooling layer as my
latent representation. For both CNN and ResNet models, this results in 512-dimensional
embeddings. For the sake of consistency, the MLPs for the SimCLR and BYOL models
followed the BYOL structure: a single hidden dimensions, with ReLU activation, and
batch normalisation. All the MLPs used 2048 hidden dimensions, and outputted a 256
dimensional vector. Lastly, we used a random seed of 23 for any random process
required for this project. In particular, random shuffling was used throughout this whole
project when training models, to improve generalisability and convergence.

https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/

Chapter 3

Data

In this section, I explain the origin of the historical maps, and how these were processed
to generate the data for the project. This data consists of positive pairs, where each pair
is composed of patches (square regions from a map) corresponding to the same region
but from different maps. I would like to thank Chris Fleet at the NLS for giving me
access to all the maps used for this project.

3.1 Obtaining Historical Maps

All the maps used for this project were sourced thanks to the NLS, which contains over
1.5 million sheet maps [32]. From these, approximately 200,000 are available in high
resolution at https://maps.nls.uk. This project focused on maps of Edinburgh (both
the city and surroundings), since there were a lot of these freely available. The NLS
contains a plethora of different historical map styles, ranging from the 16th century up
until the 20th century. Out of all of these, I wanted to focus on maps which showcased
a more modern Edinburgh, as this would provide more applicable results. I also sought
georeferenced maps, which have been aligned to a specific geographic coordinate
system, as this allowed me to easily visualise temporal differences.

In particular, this project focuses on 25 Inch Ordnance Survey Maps (which I’ll call
“OS maps” from here onwards). The Ordnance Survey is the national mapping agency
of Great Britain [33]. These maps are known as “25 Inch”, since every inch of the
map corresponds to 25 inches on the ground. These maps are suitable exemplars, since
not only are they georeferenced, but I have access to a large number of them: 212
distinct maps, split into 57 distinct regions which together encompass a total area of
278.39 km2. For each region, either 3 or 4 full maps were made available to me, each of
which corresponds to a different time period of production. In particular, I was given 57
maps for the periods 1894-1896, 1906-1908 and 1913-1914; and 41 maps sheets for the
period 1933-1947. All these maps are available as GeoTIFF files, which are standard
TIFF (Tag Image File Format) files containing additional metadata, such as bounding
boxes and the coordinate system used to georeference the map.

9

https://maps.nls.uk

Chapter 3. Data 10

Figure 3.1: An example OS map obtained from the NLS (https://maps.nls.uk/
view/82877409).

Figure 3.2: The rectangular region encompassed by all the maps. The bottom left corner
has longitude-latitude (↗3.38374788940603, 55.8715983250667), whilst the top right
corner has longitude-latitude (↗3.07422210721001, 56.0020051346329). This is an
area of 278.39 km2. Image generated using geojson.io (see subsection B.1.1).

The NLS also contains georeferenced maps in different styles, such as “Bartholomew”
style maps. However, I chose not to use these, since they had a lower resolution (many
OS maps could fit into a single Bartholomew map); they were more blemished than
the OS maps (for instance, I found red lines coloured in some Bartholomew maps);
and preprocessing them is a lot more challenging, particularly due to their border style
(more on this in the next section). Hence, and given that OS maps are more widely used
and referenced, I found it unnecessary to produce a dataset containing both OS and
Bartholomew maps.

Figure 3.3: An example Bartholomew map. The colourful regions could harm the model’s
performance. The borders make these maps harder to pre-process. Moreover, this map
is oriented vertically, whilst all the OS maps are horizontal.

https://maps.nls.uk/view/82877409
https://maps.nls.uk/view/82877409
geojson.io

Chapter 3. Data 11

3.2 Generating Data for Training

3.2.1 Preprocessing the Maps

Before generating a dataset, I pre-processed the maps in 2 steps. Firstly, I rotated and
cropped the maps, to rectify scanning issues which would have made map alignment
and positive pair generation impossible. Secondly, I downsampled the maps, as their
large memory footprint and high resolution would have made them harder to use for
training.

3.2.1.1 Rotating and Cropping

The TIFF files contained maps which had been rotated during scanning, and then to
create a rectangle, padded with white pixels. Since each TIFF file had a different
rotation and dimensions, aligning 2 maps correctly was impossible.

Figure 3.4: The map showcased in Figure 3.1 before any pre-processing. I have added
the black frame to show the padding present in the maps before any pre-processing.

However, using OpenCV [34] I could rotate the map to make it horizontal, and then easily
crop out the padding. Code for this is available at section B.2. Whilst the resulting
maps were still of slightly different widths and heights (since the original maps had a
dimension mismatch), this difference was negligible, given how large the maps are, and
posed no problem for training down the line. Nonetheless, sometimes the boundary
between map and padding couldn’t be properly located, so not all padding was removed.
Such maps were removed from further pre-processing, since this affected less than 10
of the 212 maps, most of which contained very few informative features anyways.

Figure 3.5: A map whose right padding wasn’t removed during preprocessing.

Chapter 3. Data 12

3.2.1.2 Downsampling

The metadata and high resolution of the GeoTIFFs means that each map occupies 400-
600MB of memory, which makes them challenging to work with. Moreover, the high
resolution would require me to work with relatively large patches to distinguish features
like roads or full buildings, which would lengthen the learning process unnecessarily.
Therefore, I decided to downsample the maps by considering kernels of width 2, 3 and
4, where each kernel converts square regions of the kernel’s width into a single pixel. I
considered standard downsampling (pick the minimum, average or median pixel value
over the region) and resizing (use bilinear, bicubic or nearest-neighbour interpolation).

(a) Standard downsampling applied on each map. For the 2→ 2 kernel, all methods seem to
behave similarly. For wider kernels, using the minimum pixels results in a loss of pattern detail,
alongside a darkening of the image. Similarly, mean downsampling results in a blurring effect.
The median, to a lesser degree, also sees loss of detail, particularly with lightening of pixels.

(b) Downsampling via resizing applied on each map. Both bilinear and bicubic interpolation look
very similar for all kernel sizes, with good detail preservation. Nearest interpolation also works
quite well, but loses some details in the writing for the 4→4 kernel.

Figure 3.6: Downsampling strategies applied to 64→64 patches.

Given the results from Figure 3.6, I chose to apply bilinear interpolation as my down-

Chapter 3. Data 13

sampling method. I felt that it preserved structure better (letters, shapes, shadings) than
the standard downsampling methods; it also looked extremely similar to the bicubic
method, and it seems to work better than nearest-neighbour interpolation for bigger
kernel sizes. I also felt that using a kernel size of 4 allowed the most flexibility, since
then even small patches of size 32→32 contained identifiable features. After all these
pre-processing steps, each map occupied around 28MB (this suggest that I successfully
isolated the maps from the original TIFF files, as before the rotation and padding meant
that the TIFF files had variable file sizes of 400-600MB); by converting them to PNG,
we further reduced the file sizes to around 14MB.

3.2.2 Finding Maps of the Same Region

Once the maps had been pre-processed, I had to determine when 2 maps corresponded
to the same region, as these would be used to construct the positive pairs. Doing this
manually would have been tedious, inefficient and non-scalable, particularly since the
file names I was given were rather cryptic (for example, 82878027.tiff). Whilst
this can be done by exploiting the georeference information present in the GeoTIFFs
(such as the bounding boxes for the maps), I found that the rotations present within
the scanned maps had affected the georeferenced data aswell. This could be dealt
with fairly easily (as I detail in section A.1), but the method we developed assumed
that the georeferenced bounding boxes for maps of the same region were similar, and
we couldn’t guarantee this. Because of this, I asked the NLS whether they had more
reliable metadata about the maps, as this would allow me both identify maps of the same
region, but also access other useful pieces of information, such as year of production.
Thankfully, this was made available to us as a table (see Table B.1 for further details),
and we were able to group maps by region, using the bounding boxes present in the
table.

3.2.3 From Maps to Patches

To generate the patches, I used the package patchify [35] to split up each map. I
created a custom class to represent these patches, in order to store additional data, such
as the map from which the patch was extracted and the coordinate of the patch’s left
pixel in the original map. This helped organise the patches, particularly when working
with them in downstream tasks.

It is important to note that patchify will discard parts of the map, so as to ensure that
every patch which is created has the same shape. For example, if the maps were of
size 640→660, and I wanted to create 64→64 patches, patchify would “ignore” the
column which is 20 pixels wide at the end of the map, and effectively just create 100
patches, by considering a region of size 640→640. patchify does include functionality
to create overlapping patches, which would mean that we’d be able to potentially use
the whole map for patches. This could provide some benefits, in terms of learning more
geographically aware embeddings (since neighbouring patches would share features).
However, for this project I decided to focus only on non-overlapping patches, as I felt
including the overlaps could complicate the analysis and applicability of my results.

Chapter 3. Data 14

Once I had the patches, I developed an alignment algorithm, which would shift patches
to maximise their degree of visual alignment, and thus generate positive patch pairs.
However, after applying it, I noticed that barely no alignment was required in most
cases (this is discussed in detail, alongside the algorithm, in section A.2), so I chose
to not use the alignment algorithm. Moreover, misalignments of a few pixels, could
constitute some degree of data augmentation, which is an integral part of CL.

Figure 3.7: In general, upon converting maps into patches, patches tended to align well
with one another visually, so we decided to not apply the alignment algorithm.

3.2.4 Generating Datasets from Maps

For training the models, each training sample corresponds to a positive pair of patches
(i.e 2 patches representing the same area, but taken from different maps). Since I had 3
or 4 maps for each region, I had 3 or 4 different patches representing the same area. I
defined positive pairs by considering all unique combinations of aligned patches. For
instance, if I have 4 patches for the same area, this results in 6 positive pairs:

• patch 1 gets associated with patches 2,3 and 4

• patch 2 gets associated with patches 3 and 4 (since a pair already includes patches
1 and 2)

• patch 3 gets associated with patch 4 (it has already been associated with patches
1 and 2)

Similarly, if I had 3 patches, then these would generate 3 positive pairs.

However, I decided to remove some positive pairs from the final datasets, since a lot of
patches were blank or contained few discernible features (such as residual segments cut
off from buildings/text during the patchifying process). Any patch pair containing at
least one of these uninformative patches was removed from the data, as I hoped that a
more feature dense dataset would improve the contrastive representations. To achieve
this, I once again used OpenCV: I converted patches to grayscale, applied Gaussian blur
with a 3→3 kernel (and automatic standard deviation), applied the Canny [36] edge
detection algorithm, and counted the number of black pixels found in the edges. If these
constituted less than 1% of all pixels in the patch, any positive pair containing the patch
was removed.

Figure 3.8: Edge detection applied to a patch. This provides a crude measure of
information content, and provides a simple heuristic for informative features.

Chapter 3. Data 15

I chose a 1% threshold after visually exploring the patches which were removed, and
observing that it generally correlated well with my judgement of whether a patch
contains informative features or not:

Figure 3.9: Random selection of 10 patches, 5 of which are uninformative according to
the algorithm defined above. Notice how patches which are deemed as uninformative
can still contain features (such as pieces of text, legends or parts of a road), but these
are minimal, and I don’t believe they’ll contribute to learning more useful representations.
On the other hand, non-empty/informative patches are feature rich. Notice how a patch
in which full-text appears will generally be recognised as informative.

Whilst exploring the generated dataset, I observed that certain patches contained black
lines at the edges, which I believe are lines corresponding to the borders of the maps. I
found these to be problematic, since potentially empty patches which have this border
would still remain in the dataset, even though the border doesn’t constitute an interesting
feature to learn. To filter out patches which contain these border pixels, I looked at
whether the patches contained continuous vertical/horizontal bands of pixels across the
left/right/top/bottom 10% of the image (with edge detection). If any of these bands was
completely composed of black pixels and these black pixels constituted at least 50% of
all edge pixels found in the patch, I removed any patch pair containing said patch. This
ensured that if images do have informative content, they remain in the dataset, even if
they do have artifacts derived from the border pixels.

Figure 3.10: Examples of patches which have border pixels. Our filtering algorithm will
remove the first 4 of these patches, since most of the information that they contain is in
the border pixels. However, the last patch will be preserved in the dataset, since it does
hold informative value.

I also considered much harsher thresholds (such as 25% instead of 50%), but observed
that this only contributed to removing an additional 1,000 positive pairs. Whilst it is true

Chapter 3. Data 16

that borders themselves don’t contribute an informative features, patches containing
borders can still hold useful information (such as the types of features which are
typically at the borders of maps). Thus, by choosing a higher threshold, I could be
more certain that I was removing patches containing mainly border pixels. See the full
implementation in section B.4.

Based on training speed and model performance on preliminary runs, I decided to utilise
128→128 patches. This resulted in a final dataset containing 104,239 positive patch
pairs, after removing 44,531 positive patch pairs via the methods outlined above.

(a) Examples of positive pairs preserved for the final dataset (each column is a positive pair). As
can be seen, they contain plenty of information, and the alignment is fairly good.

(b) Examples of positive pairs removed from the final dataset (each column is a positive pair). As
can be seen, empty, uninformative patches are removed. However, due to differences in styling,
and the unperfect alignment, certain positive pairs are removed, despite one of the patches
containing useful features.

Figure 3.11

3.2.5 Splitting the Dataset

In general, self-supervised learning is used to learn pretrained representations, which
can be employed in unrelated downstream tasks, where there is little data for training.
As such, large datasets (such as ImageNet) are fully used to train the contrastive models.
In my case, since I wasn’t using any external dataset, and all the downstream tasks
which I’d designed employed these historical map patches, I decided to split the 104,239
positive patch pairs into training, validation and testing pairs, using an 80-10-10 split
respectively. I used this split both for training the contrastive models, and evaluating
them in downstream tasks.

Chapter 3. Data 17

Initially, I thought of applying this split in a straightforward manner, by selecting a
corresponding proportion of positive pairs for each of the datasets. However, this has a
clear flaw: whilst this prevents the same positive pair from being used in training and
evaluation, the nature of the data makes it so that the same patch can appear in training,
validation and testing, since every patch appears between 1 and 4 times within different
positive pairs in the dataset. This would be problematic, as at evaluation time, our
model will have likely already seen some of the patches, so even if it has never directly
observed a specific positive pair, this is likely to inflate generalisation performance.

Because of this, I opted for applying the split by using patch indices. Say we have a
region r, and that there are 4 OS maps representing said region: M r,1,M r,2,M r,3,M r,4,
and let M r, j

i denote the ith patch of the jth such map, where j ↓ {1,2,3,4}. Then, let
Pr denote a set of indices, such that if i ≃↓ Pr, then M r, j

i is a patch which was removed
from the final dataset in the process outlined in subsection 3.2.4, and otherwise M r, j

i
is a patch which has remained in the dataset. For each region r, I sample 80% of
the indices in Pr for training, 10% for validation, and 10% for testing, to generate
Pr
train,P

r
validation,P

r
test respectively. Our final training, validation and testing sets are

then constructed by, for each region, using the patches corresponding to the indices
in Pr

train,P
r
validation,P

r
test. This ensures that if there is a positive pair of the form

(M r, j1
i ,M r, j2

i) in one of the datasets, then the patches M r, j1
i and M r, j2

i will only ever
appear within the same dataset. Due to different regions having different degrees of
informativeness, after splitting the dataset, the result wasn’t a perfect 80-10-10 split:

• 83,648 positive patch pairs for training (80.20% of the full dataset)

• 10,285 positive patch pairs for validation (9.91% of the full dataset)

• 10,306 positive patch pairs for testing (9.90% of the full dataset)

3.2.6 Using Larger Patches

As part of my experiments, I also wanted to see whether increased patch sizes of
224→ 224 would influence the training results (these patches wouldn’t have to be
reshaped to pass them through the ResNet models, and they should contain more
information than the 128→128 patches). Since these patches were larger, since I didn’t
use overlapping patches, and since the maps have different sizes, the different maps
for the same region could get split into a different number of patches. In future work,
overlapping patches could be used which ensure that all regions get split into the same
number of patches (as otherwise we wouldn’t be able to align patches). However, this
wasn’t the main focus of our investigation, so for simplicity I decided to proceed by
only using regions in which all the maps split into the same number of patches. Overall,
following the procedure outlined in subsection 3.2.4 followed by the same 80-10-10
split, this resulted in:

• 24,093 positive patch pairs for training (80.53% of the full dataset)

• 2,938 positive patch pairs for validation (9.82% of the full dataset)

• 2,886 positive patch pairs for testing (9.65% of the full dataset)

Chapter 4

Methodology and Results

In this section, I outline the different hyperparameters considered for training, and
showcase the 3 proxy tasks I have used to evaluate my models, which should help
understand the sort of features being captured by the contrastive representations:

1. Positive Pair Identification Tasks: how good are the representations at identify-
ing true positive pairs? How does the similarity vary between patches?

2. Encoded Features: what sort of information is encoded within the learnt repre-
sentations? Does this correspond with what I expect?

3. Clustering: is there meaningful structure to the representations in latent space?

This is common when evaluating contrastive models, since then one can see whether the
representations capture the underlying structure of the data. For instance, in the SimCLR
and BYOL papers, they used the representations to classify images from ImageNet,
comparing the performance with a fully supervised model. In this case, evaluation isn’t
as simple, since I don’t have access to any specific labels for each of our patches.

4.1 Training the Models

4.1.1 Hyperparameters

The choice of encoder is critical for CL, so I opted for investigating ResNet18,
ResNet34 and a simple CNN (as described in subsection 2.2.3) as encoders. I also
considered the effect of using pretrained ResNet models. Moreover, I varied the learn-
ing rate and the batch size (since in the SimCLR and BYOL papers they claim that larger
batches lead to better representations). Finally, SimCLR has the temperature parameter
in its loss, whilst BYOL has the exponential moving average proportion. I refer to both
of these hyperparameters with !; the reader should understand which hyperparameter is
being referred to by context.

18

Chapter 4. Methodology and Results 19

4.1.2 Training Procedure

In order to select the models for downstream tasks, I performed a total of 20 experiments
(see Table C.1), where each hyperparameter was changed at a time, for both a BYOL and
a SimCLR model. These changes were relative to a “base model” for each architecture,
which used a pretrained ResNet18 encoder, with ! = 0.99, a learning rate & of 1→
10↗3,a patch size of 128 and a batch size of 64. Ideally, I would compare every
hyperparameter combination, but this would be unfeasible. Given hardware constraints,
I conservatively estimated that training each of the models for just 5 epochs would take
64 days (this doesn’t include using the CNN encoder, which require less training time
than ResNet-based models). See section C.1 for details of this estimate.

All experiments were set to run for 25 epochs on the Informatics Teaching Cluster
(given preliminary tests, this was the most that I could afford to do). However, I included
early stopping to avoid wasting resources in unnecessary computations. I evaluated
each model 150 times per epoch, and stopped training if there was no validation loss
improvement in one full epoch, or there was no validation loss improvement in 60
consecutive evaluations after 5 epochs. I wanted to ensure that the models had at least
5 epochs to train, as in preliminary runs models generalised fairly well after 5 epochs.
However, if a model got stuck in a local minimum, and its validation loss barely changed
within the first 5 epochs, this would have wasted computing resources. All training
results can be found in section C.3.

After training, I evaluated each model using the weights which lead to the lowest
validation contrastive loss. Even if a lower loss doesn’t necessarily correspond with a
better model, this might be the fairest way of comparing the models amongst themselves,
as I am using the versions which performed best on unseen data.

4.2 Positive Pair Identification Tasks

Evaluating each trained model on the subsequent tasks would have been unrealistic
(due to memory and time constraints), so I only compared one SimCLR model and one
BYOL model on downstream tasks. To decide which models to use, I defined a series of
Positive Pair Identification Tasks (PPIT), which I executed on the validation set. These
classification tasks aimed at showcasing the capacity of the contrastive representations
in finding true positive patch pairs, which is the principal goal of this project.

4.2.1 Problem Setup

To gauge how well the latent representations comprehend our notion of similarity, we
can use them to determine whether 2 patches form a positive pair. Let P,Q be an
ordered list of all validation patches (so that (Pi,Qi) forms a positive validation pair).
We construct 2 matrices X ,Y ↓ RN→512, where the ith rows of X ,Y are defined by:

Xi,: = embed(Pi) Yi,: = embed(Qi)

and embed takes a patch, embeds it using a contrastive model and normalises it to unit
length. Then, define a similarity score matrix as S = XY T , where Si j is the similarity

Chapter 4. Methodology and Results 20

score between Pi and Q j (the cosine similarity between their 2 embeddings). We can
find the patch in Q most similar to a Pi ↓ P:

Q̂i = max
Q j↓Q

Si, j

or find the patches which are most similar to Pi ↓ P, based on which Q j ↓ Q are such
that Si, j ⇒ sim thresh, where sim thresh ↓ [↗1,1].

Due to how I have constructed the positive pairs in the datasets, some patches can
appear multiple times in P and Q. For instance, a region present in 4 maps contributes 6
positive patch pairs (p1, p2),(p1, p2),(p1, p3),(p2, p3),(p2, p4),(p3, p4), so p2 appears
twice in P and once in Q. Since a patch has a similarity score of 1 with itself, some
entries in S will be 1, which is undesirable, as it isn’t indicative of how well the model
captures similarity. Hence, I masked such entries (by assigning them a large negative
value) to ensure that when finding the most similar patch, a trivial patch isn’t returned.

4.2.2 Tasks Considered

The first task involves computing Top-K Accuracy in identifying the patch Qi ↓ Q
which forms a positive pair with patch Pi ↓ P. To do this, for each K, I find the K
patches in Q which attain the largest similarity scores with Pi. If Qi is within these
patches, I count this is a correct classification. I considered K ↓ {1,5,10}. Using just
Top-1 Accuracy wouldn’t be that useful of a metric, due to the fact that for each patch
I can have multiple positive pairs; I hoped to mitigate this by also considering Top-5
and Top-10. As a variant to Top-K Accuracy, I instead computed accuracy with respect
to identifying all true positive pairs, which I call Positive Pair Accuracy. To this end,
say that a single patch Pi ↓ P forms distinct positive pairs with K patches in Q. I then
find the K distinct patches in Q with the highest similarity score with Pi, and compute
the proportion of these whcih form a positive pair with Pi. Finally, I take the average of
these proportions to compute the Positive Pair Accuracy.

4.2.3 Results
Table 4.1: Results for the PPIT for each of the BYOL models.

Model Top-1
Accuracy

Top-5
Accuracy

Top-10
Accuracy

Positive Pair
Accuracy

BYOL (Base) 0.22460 0.73962 0.78999 0.72309

BYOL (! = 0.95) 0.22178 0.74108 0.79290 0.72363

BYOL (! = 0.90) 0.22256 0.74759 0.79679 0.73359

BYOL (! = 0.80) 0.22071 0.74118 0.79028 0.72708

BYOL (Not Pretrained) 0.18172 0.55527 0.62722 0.53350

BYOL (ResNet34) 0.21682 0.72611 0.77647 0.71123

BYOL (CNN) 0.17151 0.53972 0.58532 0.52460

BYOL (Patch Size 224) 0.25323 0.87474 0.90572 0.86964

BYOL (Batch Size 32) 0.20924 0.66952 0.72280 0.65270

BYOL (& = 1→10↗2) 0.0048 0.01575 0.02178 0.0146

Chapter 4. Methodology and Results 21

Table 4.2: Results for the PPIT for each of the SimCLR models.

Model Top-1
Accuracy

Top-5
Accuracy

Top-10
Accuracy

Positive Pair
Accuracy

SimCLR (Base) 0.22168 0.74166 0.79242 0.72557

SimCLR (! = 0.95) 0.21915 0.73320 0.78785 0.71940

SimCLR (! = 0.90) 0.22538 0.74545 0.79582 0.73155

SimCLR (! = 0.80) 0.22547 0.75158 0.80010 0.73515

SimCLR (Not Pretrained) 0.22615 0.75790 0.79922 0.74210

SimCLR (ResNet34) 0.22421 0.74263 0.79417 0.72679

SimCLR (CNN) 0.22654 0.76305 0.80272 0.74905

SimCLR (Patch Size 224) 0.25528 0.88904 0.91355 0.88462

SimCLR (Batch Size 32) 0.22217 0.73534 0.78882 0.71740

SimCLR (& = 1→10↗2) 0.22480 0.75012 0.79689 0.73525

The most noticeable fact about the results shown in Table 4.1 and Table 4.2 is that using
224→224 patches leads to better performance in all the PPIT. However, comparing these
accuracies with those for runs using 128→128 patches is unfair: with larger patches,
more information is available to distinguish between patches, so better performance
doesn’t imply better representations. For this project, I focused on the 128→ 128
patches, since they encompassed all the maps, so derived conclusions should be more
representative, although use of larger patches should be further explored in future work.

Looking at Table 4.1, BYOL obtains variable results in the PPIT. In some cases, this is
because a model suffers from representational collapse: under certain settings, the lack
of negative pairs make it so that BYOL learns to map all patches to very similar represen-
tation. For example, when using & = 1→10↗2, as can be seen in subsubsection D.1.1.9.
This harms the model’s capacity of identifying when 2 patches are similar. Beyond this,
the best BYOL model seems to use ! = 0.90, achieving the best results in all metrics
except Top-1 Accuracy (where it got the second best result). On the other hand, SimCLR
obtains relatively similar results across models, probably due to the stabilising effect of
the negative pairs. Surprisingly, the SimCLR model using a CNN encoder obtained the
best result in all metrics. Lastly, putting the results of Table 4.1 and Table 4.2 side by
side, SimCLR models attain slightly higher results across all PPIT metrics. Henceforth,
I use the BYOL model trained with ! = 0.90 as the “best BYOL model”, and the SimCLR
model trained with a CNN encoder as the “best SimCLR model”.

I was worried that early stopping hadn’t allowed ResNet-based SimCLR models to train
for enough time and learn good representations. Thus, I retrained the 2 best ResNet
models (ResNet18 without pretraining, and with ! = 0.80) for 15 epochs. Despite
a slight decrease in training and validation loss, and a small improvement in PPIT
performance, the CNN-based SimCLR model still obtained better results (see section C.4).

4.2.4 Applicability of Results

The metrics from Table 4.1 and Table 4.2 highlight how all the SimCLR models, and
a majority of the BYOL models, are adept at identifying similar patches, even if said

Chapter 4. Methodology and Results 22

patches are unseen by the model. To verify this, I directly inspected the 5 most similar
patches found by each model, given some reference patch (more observations available
in subsection D.2.1). For the rest of this project, when discussing a patch Pi (which I’ll
interchangeably name “reference patch” or Pi), I’ll refer to a patch Q j as a “positive
patch” if (Pi,Q j) constitute a positive patch pair, and as a “negative patch” otherwise.

I observed that the learnt contrastive representations are capable of understanding how
many different features (roads, buildings, trees, streets, etc...) are composed together
to generate a patch. Whilst this might seem fairly trivial, given the variability in styles
across the maps, the capacity for generalisation of these models is impressive. For
instance, they seem to understand differences between roads with trees to the side, and
city roads. Moreover, the models seem to find positive pairs, even if there isn’t an
immediately obvious visual similarity (see Figure D.4).

Furthermore, I noticed that, generally, SimCLR identified all positive patches correctly
as the most similar patches (if Pi had 3 positive patches, these were often deemed as
the 3 most similar). Contrarily, BYOL wasn’t as discriminative, and sometimes the most
similar patch wasn’t part of the correct positive patches. This is somewhat perceptible
when looking at positive pair accuracy in Table 4.1 and Table 4.2. However, when
looking at the most similar negative patches, BYOL was better at finding “the next best
patch”. For instance, in Figure 4.1 and Figure 4.2 one can observe how BYOL has found
patches which are more nuanced, and share more features with the reference patch. This
indicates that SimCLR based models can be better at meticulously retrieving positive
pairs, whilst BYOL might find more diverse, albeit semantically consistent patches.

Figure 4.1: Both SimCLR and BYOL identify the correct positive pairs, and assign to them
a notably higher similarity score. However, the most similar negative patches found
by SimCLR aren’t that great: whilst they contain railtracks, they are visibly semantically
dissimilar. On the other hand, both positive and negative patches found by BYOL contain
a high degree of semantic similarity, staying true to the railtrack style and positioning.

Chapter 4. Methodology and Results 23

Figure 4.2: Both SimCLR and BYOL identify 2 of the 3 correct positive patch pairs
(although they can’t find the darker shaded one, despite having identical building structure
to the other positive pairs). SimCLR assigns much higher similarity score to the true
positive patches, whereas BYOL gives fairly consistent scores throughout. The patches
found by BYOL seem more semantically correct, as most of them show a diagonal road
(with text) in the rightmost 2/3 of the patch, with buildings at its sides. On the other hand,
SimCLR finds visually similar buildings, but which convey different information.

Overall this reveals how the contrastive models can be utilised to “lookup” patches
which share a set of features across a variety of different maps, which can allow
cartographers or historians to efficiently search for similarities and differences in maps
across different eras.

Another potential usage for these methods which I wasn’t able to explore in this project
is unsupervised map alignment. For instance, say we have patches corresponding to
an unseen historical map. Then, I can search through a database of all the contrastive
representations embeddings, and for each unknown patch, find the K most similar
corresponding patches (here K represents the number of distinct hisotrical time periods
encompassed by the maps in the database; in our case K = 4). Then, one can take a
majority vote between the locations of the found patches, to determine the longitude
and latitude to assign to the unknown patches. Measures could be taken to ensure
a consistency between the coordinates assigned to adjacent unknown patches (i.e 2
patches adjacent in the map should be assigned adjacent longitudes and latitudes).

4.2.5 Visualising Similarity Scores

To understand the similarity score distributions of the models, I visualised the simi-
larity score matrices from subsection 4.2.1 as grayscale images where pixel intensity
corresponds to similarity score. I also randomly sampled 100 rows in S, and plotted
the corresponding 10,285→ 100 = 1,028,500 scores as a histogram using 100 bins
(excluding masked entries).

Chapter 4. Methodology and Results 24

(a) Similarity score distribution for the SimCLR model with CNN encoder.

(b) Similarity score distribution for the BYOL model with ! = 0.90.

Figure 4.3: Darker colours in the similarity score matrices represent higher similarity
scores (closer to 1). Notice the white pseudo-diagonal, generated by the mask applied
to ensure that I don’t take the similarity score of identical patches into account. The
y-axis of the histograms corresponds to the proportion of scores which are part of a
certain bin. Distributions for all other models are available at section D.1.

In general, all SimCLR models had a strongly left-skewed similarity score distribution
(Figure 4.3a exemplifies this). The type of encoder seemed to influence the range of the
distributions: with a ResNet, similarity scores were in the range (0.2,1), whilst with a
CNN scores were in the range (↗0.1,0.95). Moreover, all ResNet-based SimCLR models
had a small peak in the last bin of the distribution (due to assigning scores above 0.99),
whilst the CNN-based SimCLR model is monotonic. Lastly, when the ResNet wasn’t
pretrained, the similarity score distribution became symmetric.

On the other hand, BYOL models displayed a more notable distributional difference,
although generally they were slightly right-skewed, as shown in Figure 4.3b. For
collapsed representations (like when using & = 1→ 10↗2 or a batch size of 32), the
scores were extremely right-skewed, since most pairs obtained a similarity score close
to 1. Strangely, both ResNet34-based and CNN-based BYOL models had a bimodal
distribution. I also noticed that score distribution ranges followed a similar trend as with
SimCLR models: a CNN encoder lead to wider score ranges (including negative scores),
whilst ResNet encoders assigned positive scores above 0.2.

Since the distributional differences between SimCLR and BYOL generally apply indepen-
dent of hyperparameter choice, they could be due to architecture choice, particularly
the use of negative pairs in training. In SimCLR they push representations to be more
discriminative; however, BYOL solely “sees” positive pairs, so representations might

Chapter 4. Methodology and Results 25

move towards pursuing higher similarity, rather than similarity with positive pairs, and
dissimilarity with negative pairs. This is noticeable when comparing Figure 4.3a and
Figure 4.3b, whereby the BYOL similarity score matrix is darker, indicating it is assigning
higher scores to every pair. Moreover, negative pairs could provide a stabilising effect;
without them, high learning rates or small batch sizes might lead to local minimum
convergence, which for BYOL could be representational collapse.

4.3 Exploring Encoded Features

4.3.1 Classification Tasks

To explore how information was encoded in the representations, I defined two classifi-
cation tasks, where I classify patches based on time period and amount of information,
based solely on their contrastive representations. I used an MLP classifier (call it MLP C),
with a 512-dimensional input, followed by 3 fully-connected, hidden layers (1024, 2048
and 512 hidden units respectively), each with bias and ReLU activation. The output uses
a linear layer with bias and softmax activation. I trained for 5 and 50 epochs (to see the
effect of longer training time), using a batch size of 128, Adam optimiser, cross-entropy
loss and learning rate of 1→10↗3. After removing duplicate patches, I obtained 61,647
training patches, 7,689 validation patches and 7,697 testing patches.

4.3.1.1 Temporal Awareness

Positive pairs were constructed using temporally-spaced patches, so I expected tem-
porally invariant contrastive representations. Ideally, such embeddings will encode
structural patch elements, and compress out stylistic aspects characteristic of maps from
a given time period. I used the NLS metadata to define 4 temporal classes for the maps:
before 1900, 1900-1910, 1910-1930, and after 1930. This ensures balanced classes:
the first 3 classes contain 57 maps each, whilst the final class contains 41 maps (see
section 3.1). Then, I trained MLP C to predict patch time period from their embedding.
Table 4.3: Training, validation and testing data distribution for the time prediction problem.

Class [Year] 0
[< 1900]

1
[< 1910]

2
[< 1930]

3
[> 1930]

Training Samples
(Proportion)

16,426
(26.65%)

16,600
(26.93%)

16,767
(27.20%)

11,854
(19.23%)

Validation Samples
(Proportion)

2,033
(26.44%)

2,073
(26.96%)

2,115
(27.51%)

1,468
(19.09%)

Testing Samples
(Proportion)

2,063
(26.80%)

2,080
(27.02%)

2,099
(27.27%)

1,455
(18.90%)

If MLP C obtains an accuracy close to a random classifier (25%), this could indicate
that the embeddings are temporally indifferent. However, perhaps the patches don’t
contain temporal information. Thus, I define an end-to-end classification problem
using CNN C, a simpler CNN encoder than those used by the contrastive models. If
CNN C converts patches into embeddings from which MLP C successfully predicts time
period, this indicates the presence of temporal information in the patches. CNN C takes
in a 128→128 patch, and is comprised of 2 convolutional layers (learning 32 and 64

Chapter 4. Methodology and Results 26

filters respectively), each with ReLU activation, batch normalisation and max pooling,
followed by global average pooling, and a linear layer with bias, which outputs a 512-
dimensional embedding. Finally, I defined 3 baselines (uniform random model, random
model sampling according to training proportions and a most common class model).
Table 4.4: Results of the time period prediction problem, over 5 and 50 epochs. I include
the best training and validation performances, alongside the test performance of the
model achieving the best validation accuracy.

Classifier
Training Accuracy Validation Accuracy Testing Accuracy

5 epochs 50 epochs 5 epochs 50 epochs 5 epochs 50 epochs

Uniform Random 0.2500 0.2500 0.2500

Weighted Random 0.2549 0.2547 0.2553

Most Common Class 0.2720 0.2751 0.2727

SimCLR Embedding + MLP C 0.5313 0.9844 0.4973 0.5252 0.5027 0.5095

BYOL Embedding + MLP C 0.375 0.4141 0.2965 0.3811 0.3077 0.3857

CNN C Embedding + MLP C 0.8672 0.6700 0.6592

The results from Table 4.4 imply that the BYOL model is good at ignoring temporal
differences between patches, as its representations perform poorly on the time predic-
tion task. In fact, after training I observed that MLP C primarily predicted classes 0
and 2 throughout all 3 datasets, implying that it struggled to find features in the BYOL
representations to predict the patch’s time period. Furthermore, MLP C doesn’t perform
well on validation/testing with SimCLR representations, but overfits to the training repre-
sentations, particularly after 50 epochs. Lastly, when MLP C uses CNN C it significantly
outperforms both contrastive models, even when run for only 5 epochs.

This indicates that the simple CNN C finds temporal information in the patches (probably
due to the characteristic styles of maps from different time periods). I hypothesise that
the contrastive models also somewhat encode temporal information, but this isn’t their
primary goal. This can be seen from Table 4.4, whereby training for longer allows
MLP C to more fruitfully extract temporal features from the contrastive representations
of both models, leading to a sizeable performance improvement.

Given that MLP C overfits with SimCLR embeddings, but generally predicting the same
labels with BYOL embeddings, this indicates that BYOL learns more temporally invariant
representations than SimCLR. Perhaps SimCLR better encoding the characteristic stylistic
features of the different maps, and is thus better at temporal discimination. Alternatively,
BYOL might better abstract away from these features, and is thus learning more semantic
representations. Beyond architectural differences, this could be due to the encoder used.
Complex ResNets should better generalise to these characteristic features, whereas the
simpler CNN encoder might struggle more to ignore the stylistic differences.

This could help explain how in Figure 4.3 (and section D.1), the CNN-based SimCLR
model had a wider similarity score distribution, with all similarity scores below 0.95,
whilst ResNet-based models had a narrower similarity score distribution, but with many
similarity scores above 0.99. If CNN-based models better encode temporal information,
stylistic differences between patches might prevent patch pairs from attaining extremely

Chapter 4. Methodology and Results 27

high similarity scores, whereas the higher abstraction capabilities of ResNets makes
the models perceive more patches as highly similar.

4.3.1.2 Information Awareness

If we apply edge detection to the patches as in subsection 3.2.4, and count the pixels
in detected edges, this roughly describes patch informativeness, as patch features are
primarily simple lines (generally, more edge pixels will imply more features). Intuitively,
a patch with a letter is less informative than a patch with many trees, as it has less
learnable features. I use MLP C to classify contrastive representations based on edge-
detected pixel count to gauge informativeness encoding in the embeddings.

Initially, I defined the classes using equally spaced ranges for pixel counts (for exam-
ple, class 2 could be composed of patches with 1000-1500 edge pixels). However,
I visualised the edge pixel distribution in training and validation patches, and it was
quite left-skewed (since patches with few features are more common). Thence, this
approach would have lead to class imbalance, hindering classification. Consequently,
I arbitrarily chose to use 5 classes, and found 5 thresholds to split the training data
into roughly equally sized subsets (see section C.5 for implementation, and Table 4.5
for the thresholds). Class labels for validation and testing were generated using these
thresholds. As in subsubsection 4.3.1.1, I compared the performance with 3 baselines,
but didn’t use the end-to-end encoder (this task would be trivial even for CNN C).
Table 4.5: Training, validation and testing data for the information prediction problem.

Class [Threshold] 0
[⇑ 453]

1
[⇑ 969]

2
[⇑ 1864]

3
[⇑ 2995]

4
[> 2995]

Training Samples
(Proportion)

12,352
(20.04%)

12,320
(19.98%)

12,319
(19.98%)

12,335
(20.01%)

12,321
(19.99%)

Validation Samples
(Proportion)

1,611
(20.95%)

1,670
(21.72%)

1,533
(19.94%)

1,404
(18.26%)

1,467
(19.08%)

Testing Samples
(Proportion)

1,514
(19,67%)

1,709
(22.2%)

1,573
(20.44%)

1,468
(19.07%)

1,433
(18.62%)

Table 4.6: Results of the information prediction problem, over 5 and 50 epochs. I include
the best training and validation performances, alongside the test performance of the
model achieving the best validation accuracy.

Classifier
Training Accuracy Validation Accuracy Testing Accuracy

5 epochs 50 epochs 5 epochs 50 epochs 5 epochs 50 epochs

Uniform Random 0.2000 0.2022 0.2035

Weighted Random 0.2000 0.2000 0.2000

Most Common Class 0.2004 0.2095 0.1967

SimCLR Embedding + MLP C 0.8672 1.000 0.8486 0.8504 0.8433 0.8424

BYOL Embedding + MLP C 0.7656 0.9141 0.7602 0.7930 0.7502 0.7819

Looking at Table 4.6, running MLP C for 5 epochs leads to consistent accuracy for both
models across all datasets, indicating that the contrastive models generate representa-
tions which generalise well to unseen data (at least when encoding information amount).

Chapter 4. Methodology and Results 28

Longer training leads to overfitting, implying that both contrastive models are adept at
encoding information in a fine-grained manner. Nonetheless, SimCLR representations
lead to the best performance across all datasets, so it might encode information more
precisely, or dedicate more features to represent the amount of information in a patch.

Architecture choice is probably responsible for this performance gap. SimCLR uses the
interplay between positive and negative pairs to generate representations, so effective
encoding of information amount is a simple way of assessing rough similarity (for
instance, it is easy to differentiate between a patch full of building and a patch with a
single letter). This can lead to it learning more discriminative representations. Contrarily,
BYOL’s loss relies on the similarity between the target network encoding and the online
network’s predictor encoding. Since the target network’s weights are an exponential
moving average of the online network’s, the online network won’t be pushed as hard
to learn information amount, as then matching the target encoding becomes harder
(as the target network is using “old” weights). This might lead to BYOL learning more
semantic representations, which could explain the results in Table 4.6: BYOL prioritises
“knowing” if in a patch there is a “road” or a “building”, alongside its rough orientation
and placement; factors such as shading or size might become secondary, so it becomes
less precise when encoding the amount of information in a patch.

4.3.2 Invariance Under Transformations

In CL, image augmentations are typically used to generate positive pairs, but I used
temporal differences. Thus, I wanted to see how augmentations affect the contrastive
representations. I considered augmentations inspired by the SimCLR and BYOL papers:
centre/random cropping, fixed/random rotation angle, gaussian blur, colour jitter, hor-
izontal flip and grayscaling (see implementation in section C.6). Then, for positive
pairs (Pi,Qi), I applied each transformation to Qi, and computed the similarity scores
between Pi and each transformed Qi (which I call the transformed similarity score).
Table 4.7: Original and standardised MSE between similarity scores before and after
transformation. I have ordered the table in descending order of MSE.

Transformation
BYOL MSE SimCLR MSE

Original Standardised Original Standardised

Rotation (30⇓) 0.06816951 1.000000 0.3952508 1.000000

Horizontal Flip 0.06319004 0.9267467 0.3585143 0.9069046

Random Rotation
(90⇓,180⇓,270⇓) 0.04029370 0.5899183 0.1678344 0.4236947

Random Crop
(64→64) 0.022805834 0.3326539 0.1540349 0.3887248

Centre Crop (64→64) 0.02073835 0.3022392 0.14532146 0.3666436

Gaussian Blur 0.005725238 0.08138097 0.048866849 0.1222139

Colour Jittering 0.001208771 0.01493915 0.007873815 0.01833176

Grayscaling 0.0001932637 0.000000 0.0006399037 0.000000

To score the difference between transformed and untransformed similarity scores (simi-

Chapter 4. Methodology and Results 29

larity scores of Pi and Qi without any transformation), I computed their Mean Square
Error (MSE) (lower MSE indicates representations were less affected by the augmenta-
tion). The MSE exacerbates large differences, which should clarify which transforma-
tions affect the contrastive representations most. I standardised the MSEs (between 0
and 1) to make them more comparable between models.

The results from Table 4.7 show that rotations and random flips are the transformations
which most notably alter the representations produced by both contrastive models.
These seem to affect BYOL more significantly (higher standardised MSE), particularly
with random rotations. This corresponds with what can be observed in Figure 4.1,
where orientation is critical for querying the most similar patches (for instance, the
most similar patches to a patch containing a road are patches containing roads which
are positioned and oriented in the same way; see Figure D.2 and subsection D.2.1).

Conversely, colour transformations (gaussian blur, colour jittering, grayscaling) seem to
have a negligible effect on the contrastive representations (particularly for BYOL). This
also makes sense: ignoring colour and resolution differences between maps is critical to
learn good contrastive representations.

Generally, the results in Table 4.7 showcase desirable properties for the representations.
Colour invariance is important for finding similar patches in maps from different
time periods, and sensitivity to orientation/location is imperative for map-related tasks
(differences in these attributes greatly change the semantics of a patch).

However, cropping seems to substantially affect representations, which could indicate
sensitivity to feature size (since patches are resized after cropping), or that the models
aren’t fully attending to local features. Encoding fine-grained local structure is critical
for patch representation, as it provides a discriminatory nuance which can better align
human and model judgement. Hence, it could have been useful to include cropping as
an augmentation for this project. Alternatively, I could have used the global and local
contrastive losses suggested by Chaitanya et al. [20], or do as Agastya et al. [26], and
provide a large contextual patch to help directly learn local features.

4.4 Geographical Awareness

4.4.1 Geographically-Aware Representations

4.4.1.1 Motivation

I thought I’d be able to improve the contrastive representations by imbuing them
with both visual and geospatial information. This was inspired by Ayush et al. [28],
where they learnt contrastive representations with both a contrastive and classification
objectives. They clustered images by longitude and latitude with K-Means, and used
the representations to predict the cluster. However, I didn’t think this would work for
my project: their images ranged over the whole world, whilst our maps encompass a
small, neatly subdivided rectangular region. Hence, clustering the patches’ longitude
and latitude wouldn’t be too informative, as it wouldn’t preserve local structure (for
example, 2 very different areas, like city and grasslands, could be clustered together).

Chapter 4. Methodology and Results 30

4.4.1.2 GeoSimCLR

I felt that for this project, directly imbuing geographical information within the con-
trastive representations was the way to go. I devised GeoSimCLR, a new architecture
which learns latent representations using 2 separate contrastive objectives. I based
myself on the SimCLR architecture, although it could be adapted for BYOL.

GeoSimCLR learns a latent geocontrastive representation z ↓ Rd for an image which is
composed of 2 distinct parts. The “upper-half” of z is a visual representation zv ↓ Rd/2

encoding visual similarity (akin representations learnt by standard SimCLR models).
The “lower-half” of z is a contextual representation zc ↓ Rd/2 encoding contextual
similarity, and should maximise the similarity of a patch with its directly adjacent
neighbours. For instance, given 2 neighbouring patches p,r, zp

c and zr
c should be similar

in (contextual) latent space. To do this, I use 3 patches: a reference patch p1, a visual
patch p2 (a patch of the same region as p1, but from a different map) and a contextual
patch r (a patch directly adjacent to p1, which is randomly sampled). Passing them
through an encoder f generates representations zp1 ,zp2 ,zr ↓ Rd . The visual (z⇔v) and
contextual (z⇔c) representations get passed through different projectors gv, gc, to generate
projections q⇔v ,q

⇔
c . Then, a visual contrastive loss ωv is computed between zp1

v and
zp2

v , and a contextual contrastive loss ωc is computed between zp1
c and zr

c to generate a
contextual contrastive loss. The geocontrastive loss is a weighted sum of these 2 losses:

ω= wv · ωv +wc · ωc, wv ↓ [0,1] wc = 1↗wv

I chose wv = 0.7, since I wanted to prioritise learning good visual representations, but
optimising wv,wc to suit specific tasks could be further investigated.

p2

p1
r

p2

p1

r

f (·)

f (·)

f (·)

zp2

zp1

zpr

gv(·) qp2
v

gc(·) qp2
c

gv(·) qp1
v

gc(·) qp1
c

gv(·) qr
v

gc(·) qr
c

Maximise
Visual

Agreement

Maximise
Contextual
Agreement

Figure 4.4: Sketch of how GeoSimCLR uses 2 separate contrastive losses to learn latent
representations: one for visual similarity, and one for contextual similarity.

4.4.1.3 PPIT with GeoSimCLR

To train the GeoSimCLR model, I used a CNN encoder (as it gave the best results in
the PPIT from subsection 4.2.2), and followed the procedure from subsection 4.1.2,
although without early stopping. Since visual and contextual representations are smaller
(256-dimensional), encoding useful information should be harder, so I wanted to allow

Chapter 4. Methodology and Results 31

more training time. Nonetheless, from epoch 13 onwards the best validation loss barely
changed, so I think that training for all 25 epochs wasn’t that necessary, particularly
since a CNN might not benefit as much as a ResNet from longer training.

(a) Similarity score distribution for the GeoSimCLR model.

(b) Similarity score distribution for the visual representation from the GeoSimCLR model.

(c) Similarity score distribution for the contextual representation from the GeoSimCLR model.

Figure 4.5: The visual similarity score distribution is akin to that showcased in Figure 4.3a.
The contextual similarity score distribution remains left-skewed due to the contrastive
objective, but since different patches are likely to share a lot more contexts, contextual
similarity is likely to be higher in general. Notice how the contextual representation
heavily influences the geocontrastive representation.

I then evaluated the model with the best validation loss on the PPIT. Surprisingly, using
the full geocontrastive representations lead to extremely poor results in the PPIT. These
tasks weren’t defined to evaluate contextual similarity, so perhaps including a contextual
representation harmed the similarity scores. I was able to confirm this by visualising
the similarity score matrix for the GeoSimCLR model, alongside the similarity score
matrices for the visual and contextual representations (see Figure 4.5). Therefore, I also
evaluated the visual representations on the PPIT.

Chapter 4. Methodology and Results 32

Moreover, I defined a weighted geographical similarity matrix as a weighted sum of
the visual and contextual similarity matrices. From Figure 4.5a, the geocontrastive
similarity score matrix seems to be most similar to the contextual similarity score matrix
in Figure 4.5c. With this weighted sum I hoped to push similarity scores in the direction
of visual similarity, whilst still encoding some contextual information. For the following
results, I used 0.9 as a weight for the visual similarity score matrix, and 0.1 as a weight
for the contextual similarity score matrix (I also tried 0.7,0.75,0.8,0.85,0.95, but I
found that 0.9 resulted in a good balance between visual and contextual similarity).
Table 4.8: Results for the PPIT. I compare the 2 best contrastive models with GeoSimCLR.

Model Top-1
Accuracy

Top-5
Accuracy

Top-10
Accuracy

Positive Pair
Accuracy

Best SimCLR 0.22654 0.76305 0.80272 0.74905

Best BYOL (! = 0.90) 0.22256 0.74759 0.79679 0.73359

GeoSimCLR 0.01925 0.07059 0.09334 0.06529

Visual GeoSimCLR 0.21079 0.69965 0.76296 0.68085

Weighted GeoSimCLR 0.17151 0.57608 0.68284 0.54171

4.4.1.4 Future Improvements

Preliminarily, the results in Table 4.8 aren’t spectacular: adding contextual information
seems to hinder the model’s positive pair identification capacity. Moreover, there is a
significant accuracy difference when comparing GeoSimCLR’s visual representations
with the representations from SimCLR. I believe that this is likely due to SimCLR learn-
ing larger representations (512-dimensional) than the visual representations learnt by
GeoSimCLR (256-dimensional), which allows better encoding of key details. This could
indicate that larger representations lead to better contrastive encodings. In retrospect,
and keeping this in mind, I can think of a variety of improvements, which would allow
GeoSimCLR to incorporate both visual and contextual information more effectively.

Firstly, the contrastive objective could be modified to ensure that visual and contextual
representations are learnt more cohesively: since projection and contrastive loss utilise
different parts of the representation, these don’t work synergistically in representing
similarity. Ideally, I’d like visually similar patches appearing in similar contexts to
obtain the highest similarity scores, which isn’t currently happening. To enforce this,
instead of splitting the representation, I could pass the whole representation through
2 distinct projectors, and apply the visual and contextual contrastive losses to these
512-dimensional representations. The main drawback is that visual and contextual
representations won’t be distinguishable.

Secondly, using a CNN encoder for GeoSimCLR could be too ambitious, particularly
when gauging contextual information, so the enhanced feature extraction capabilities of
a ResNet could be more appropriate.

Thirdly, it seems that the contextual representation is getting too highly weighted,
especially after normalising the geocontrastive represention to compute similarity
scores, so perhaps I could reduce the number of features involved in encoding contextual
information (i.e only use 10% of the features, instead of 50%).

Chapter 4. Methodology and Results 33

Lastly, the data could be changed. Instead of randomly sampling contextual patches
from different positions for each visual positive pair, I could use the same contextual
patch position for visual patch pairs of the same region (for example, for a given region,
always use the upper right neighbouring patch). This would reduce the variability of
contextual patches to which the model is exposed to, which should hopefully improve
the sharpness of the contextual representations. Alternatively, perhaps the data itself
isn’t too representative of context, so the contrastive representations are encoding other
features unrelated to context. To fix this, perhaps a more selective contextual sample
procedure could be used (for example, if a road is divided into 2 patches, make sure
these patches appear as contextual pairs), or an alternative way of providing context
could be used (for instance, use a 256→256 patch which contains the reference patch).

4.4.2 Clustering

The contrastive objective gives us representations which should be close in latent space,
so it is natural to ask whether there is any structure to them within the space. To
investigate this, I clustered the different contrastive representations, using 2 methods.
The first one was K-Means, due to its simplicity. However, it requires that I define the
number of clusters. Therefore, I also considered HDBSCAN [37] (Hierarchical Densitiy-
Based Spatial Clustering of Applications with Noise): not only does it automatically
find the number of clusters, it can also detect outliers, and has soft clustering capabilities.
For K-Means, I employ the scikit-learn [38] implementation, whilst for HDBSCAN, I
employ the implementation developed by McInnes, Healy, and Astels [37].

Since contrastive models use cosine similarity in latent space to define representation
similarity, it is the most natural measure with which to cluster these representation.
However, neither K-Means nor HDBSCAN have cosine distance as an available metric.
Thus, for clustering, I normalised all the representations to unit vectors; then Euclidean
distance becomes proportional to cosine distance. Indeed, if x,y are unit vectors, the
larger the cosine similarity, the smaller the Euclidean distance:

↔x↗ y↔2
2 = (x↗ y)T (x↗ y)

= xT x↗2xT y+ yT y

= ↔x↔2
2 +↔y↔2 ↗2cos(#)↔x↔2↔y↔2

= 2(1↗ cos(#))

I also considered an alternative pipeline: first, reduce the dimensionality of the embed-
dings (I considered 2,3,5,10, 15 and 100 dimensions), and then cluster the resulting
lower-dimensional embeddings with Euclidean distance. For dimensionality reduction,
I considered 2 methods: Principal Component Analysis (PCA), since it is simple and
fast (using the scikit-learn [38] implementation) and UMAP [39], since it is good at
preserving local and global structure (using the implementation by McInnes, Healy, and
Melville [39]).

Chapter 4. Methodology and Results 34

4.4.2.1 Clustering Validation Data

I began by clustering the 5,538 unique patch representations from the validation data
using HDBSCAN (manually specifying cluster number for K-Means meant that dissimilar
patches were often clustered together). Since clustering all these 512-dimensional rep-
resentations directly took too long, I applied dimensionality reduction. UMAP produced
semantically consistent clusters (meaning that patches in a cluster are semantically
similar) when using 10-100 features, although with less features the number of clusters
and outliers decreased (see Table C.6 for details). PCA generated small clusters and
deemed most representations as outliers, regardless of the number of features used.
Thus, I used 15 features for dimensionality reduction, alongside HDBSCAN for clustering.

Generally, BYOL-derived clusters tended to be very semantically consistent, whilst
SimCLR-based clusters often included anomalous patches (for instance, clusters which
predominantly had patches with trees sometimes contained patches with buildings).
Surprisingly, GeoSimCLR clusters mainly contained patches from a single map style,
without much regard to visual content (I found a cluster containing patches with rail
tracks, trees and buildings which seemed to come from the same map). This could
indicate that contextual representations learnt by GeoSimCLR are encoding map style
instead of context. Cluster examples available at subsection C.7.5.

PCA clusters were extremely semantically consistent for BYOL representations (I could
immediately come up with a textual label to describe cluster content) and distinct.
Conversely, different clusters generated with UMAP contained similar patches (although
clusters remained semantically consistent). Nonetheless, they were impressively nu-
anced, particularly with BYOL and SimCLR. For instance, a variety of clusters contained
rail tracks, differentiated by orientation and positioning (cluster 24 had horizontal rail
tracks on the top of the patch, while cluster 57 had rail tracks at the bottom going
diagonally from left to right). I also found clusters with natural elements (small or large
number of trees, trees alongside roads, mountains, grasslands), city-based (building
blocks, roads) and containing text.

Evaluating clustering systematically, particularly with unlabelled data, is a challenge.
In this case, I have exploited the canonical similarity score of the contrastive repre-
sentations to visualise how scores are distributed over clusters. In particular, for each
cluster (excluding outliers), I computed the similarity score between each of its patches,
grouped all these scores together, and plotted a histogram using 100 bins.

(a) UMAP with 15 features and HDBSCAN (excluding outliers).

Chapter 4. Methodology and Results 35

(b) PCA with 15 features and HDBSCAN (excluding outliers).

Figure 4.6: Similarity score distribution across all clusters after using UMAP/PCA and
HDBSCAN. The y-axis corresponds to the proportion of similarity scores falling in a bin.

The distributions in Figure 4.6 are fairly different to those from Figure 4.3 and Figure 4.5.
With UMAP, all distribution become markedly more right-skewed; with PCA this is only
the case with BYOL. These distributions correspond with what I observed above, whereby
BYOL seems to form highly similar clusters with both PCA and UMAP, whilst SimCLR
clusters benefit from the complexity of UMAP. This could indicate that BYOL generates
representations in a simpler or more structured manner, such that even a simple method
like PCA is capable of reducing the dimensions whilst preserving similarity information.

4.4.2.2 Visualising Contextual Representations

Following from subsubsection 4.4.2.1, I wanted to see whether GeoSimCLR’s contextual
representations were encoding stylistic features instead of contextual features. If this
were the case, then high similarity scores will be biased towards patch pairs from the
same map style, which would hinder the PPIT of the geocontrastive representations, as
observed in Table 4.8. To this end, I fetched all the patches corresponding to the same
region from the training, validation and test datasets (which came from 3 or 4 distinct
maps). I converted these into a geocontrastive representations, applied UMAP and PCA
to convert the geocontrastive, visual and contextual representations into 2-dimensional
vectors, which I finally clustered with HDBSCAN.

(a) Clusters for region 8, represented by 4 maps.

(b) Clusters for region 17, represented by 4 maps.

Chapter 4. Methodology and Results 36

(c) Clusters for region 52, represented by 3 maps.

Figure 4.7: Depiction of contrastive representations in 2 dimensions for 3 different
regions. The colours represent the cluster to which a representation is assigned. From
left to right, the geocontrastive, visual and contextual representations.

The cluster depictions from Figure 4.7 were produced using UMAP + HDBSCAN (additional
results in subsection C.7.7). I chose these 3 regions arbitrarily, but observed the
same pattern throughout all other regions I tested: UMAP neatly separated contextual
representations in embedding space according to the number of maps for a given region.
Moreover, each cluster was composed predominantly by patches from a single map,
with just 1 or 2 outliers. This strongly indicates that the contextual representations are
capturing stylistic information from the maps, instead of contextual information.

Retrospectively, this makes sense, since it is likely that the contextual patches don’t
share many visual similarities with the reference patches; in order to make these 2
patches similar, GeoSimCLR might simply default to focusing on patch style, since
things like map colour, line types, etc... will be shared between the reference and con-
textual patches. As can be seen in Figure 4.7 this can heavily affect the geocontrastive
representations. For regions 8 and 52, despite the visual clustering showcasing clear
visual differences, the geocontrastive representations get tightly clustered in similar
fashion to the contextual representations.

Admittedly, one must be careful: conclusions about lower-dimensional representations
might not apply in the original representation space. However, the consistency of
the pattern across different regions, alongside the fact that even PCA can pick up on
these distinct contextual clusters (see subsection C.7.7) provides good evidence that
my conclusion is valid. Moreover, taking the geocontrastive representations for the
different maps of a region, I computed their similarity score matrix, which revealed that
contextual similarity is significantly higher amongst representations coming from the
same map, whilst visual similarity remains relatively uniform (see Figure C.16).

4.4.2.3 Segmentation Through Clustering

Another way of illustrating structure in latent space is by clustering patches belonging
to a single map. By colouring the patches according to cluster, and then reconstructing
the map, good representations should reveal the semantic differences between different
regions of a map. For this, we took all patches corresponding to a given map from
training, validation and testing data. I clustered using HDBSCAN and K-Means (with
K = 4). I only used UMAP with 15 features for dimensionality reduction. Since the
number of patches was small, I also used HDBSCAN to cluster directly in latent space.

Chapter 4. Methodology and Results 37

(a) Segmentation using HDBSCAN in latent space.

(b) Segmentation using UMAP (15 features) + HDBSCAN.

(c) Segmentation UMAP (15 features) + K-Means (K = 4).

Figure 4.8: Segmentations for map 82877412. Outliers for HDBSCAN were assigned
a cluster by using soft clustering. These are denoted by a red box around the patch.
From left to right, the segmentations use SimCLR, BYOL and GeoSimCLR representations.
Segmentations for different maps of the same region available at subsection C.7.9.

From Figure 4.8, it seems that the most semantically significant segmentations are
obtained by using HDBSCAN directly with the BYOL representations. The dark blue
cluster corresponds to nature, the orange cluster to buildings and the light blue cluster
corresponds to railtracks. The other segmentations are either too simple (like using
UMAP + HDBSCAN with SimCLR representations, or HDBSCAN directly on GeoSimCLR
representations), or put semantically different patches in the same cluster (for example,
the green cluster for BYOL representations using UMAP + K-Means, which contains nature,
buildings and railtracks).

Notice that in all SimCLR segmentations, there is a distinct region corresponding to
grasslands which is always generated as a cluster (the green cluster when using UMAP +
K-Means). However, this isn’t found by any other method (only by BYOL with UMAP +
HDBSCAN). This hints at the high discriminative capacity of SimCLR, since the grassland
patches are particularly distinctive.

It seems that the best segmentation strategy with SimCLR is using UMAP + K-Means, as
it generally identifies the distinct regions of the map well (although some buildings
are put as part of the nature cluster, and a part of the railtracks are included within the
buildings). For GeoSimCLR, UMAP + HDBSCAN seems to work best.

Chapter 5

Discussion and Conclusions

5.1 Main Conclusions

In conclusion, I belive that I have reasonably demonstrated the effectiveness of CL in
encoding features in temporally-spaced historical maps. I have systematically compared
how different hyperparameter settings influence the capacity of SimCLR and BYOL to
learn useful representations, which allow them to recall true positive patch pairs. I have
observed that SimCLR is generally better at correctly identifying true positive pairs, and
that it learns in a more robust manner than BYOL, which given certain hyperparamter
settings, can collapse its representations. Nonetheless, I have showcased how the
positive pair finding capacity of the models can be useful when exploring similarities
across different maps, and I propose a framework for using these learnt representations
to align unseen maps.

I visualised the similarity score distributions for the 2 models, and observed a stark
differences with regards to the range and shape of the distributions, likely due to the
choice of encoder, alongside the use of negative pairs during training.

I was quite surprised that, according to the PPIT, the best SimCLR model for these tasks
seemed to employ a simple CNN encoder. Moreover, I have observed that even if I train
more complex, ResNet-based models for longer, the performance in these evaluation
metrics isn’t too significant. On the other hand, for BYOL using a ResNet-based model
substantially improved performance in these tasks.

I also sought to better understand how these different models encode the features.
Throughout the proposed tasks, I have observed a significant contrast in the sort of
patches that the different models find similar. SimCLR seems to be a lot more discrimina-
tive, which allows it to more decisively gauge whether 2 patches are similar or dissimilar.
On the other hand, BYOL seems to learn more semantically oriented representations, as
it seems to be more capable at abstracting away broad features from the patches.

SimCLR representations seem to have encoded stylistic nuances present in the maps
(which allow it to more readily discriminate when 2 patches are from the same year
of production), whilst BYOL seems to be fairly invariant to these stylistic features.

38

Chapter 5. Discussion and Conclusions 39

Moreover, SimCLR is also better at encoding the degree of information present within
patches than BYOL.

To further explore the factors influencing the learnt features, I applied transformations
to the patches, from which I observed that the representations for both models are most
sensitive to the orientation and location of patch attributes, whereas transformations
which change the colour or blurriness of a patch have the least effect. I believe that these
features are highly desirable for an application involving maps. However, I observed
that the representations are also fairly influenced by cropping, which can indicate
that the models are not gauging local features well, and are instead encoding feature
combinations as a whole.

I developed a new contrastive framework, GeoSimCLR, with the hope of learning con-
trastive representations which encode both visual and contextual information. I hoped
that these representations would be more useful for map-based applications, were un-
derstanding the surroundings of a given patch can be critical to finding patches which
are similar, and appear in similar contexts. However, I found that this combination of
visual and contextual information ultimately hurt the performance of the representations,
particularly since the contextual features were being weighted too heavily.

To investigate the structure of the representations in latent space, I employed clustering.
I observed that BYOL-based clusters were more semantically consistent, whereas SimCLR
clusters tended to have more outliers, which didn’t follow the general semantic meaning
of the cluster. When clustering GeoSimCLR, I discovered that the learnt contextual
representations seemed to primarily encode stylistic attributes. This meant that similarity
scores were biased towards patches coming from the same map type. Nonetheless, I
showed that by more heavily weighting the visual representations, I obtained similarity
scores which better aligned with human judgement.

I also used clustering to semantically segment individual maps. Generally, segmenta-
tions weren’t perfect, with different clusters overlapping. However, the clusters do seem
to encode some broad-sense awareness of semantics, particularly when clustering BYOL
representations directly in latent space.

5.2 Future Work

There are several areas of future work that could improve upon the results of this
project. First, in terms of data processing, exploring the use of overlapping patches
could provide the model with more information and feature combinations, leading to
more robust representations. Secondly, extending the project to include a wider variety
of maps with distinct styles, such as Bartholomew maps, would increase the usability
of these contrastive models, particularly given how challenging aligning maps with
such different styles is. Lastly, a more fine-grained hyperparameter tuning could be
employed to shed light on why CNN encoders work best with SimCLR for this purpose,
and why certain BYOL settings lead to representation collapse. One could also evaluate a
ResNet-based SimCLR model on temporal/information awareness tasks, to see whether
this improves the semantic awareness of the model, in contrast to when a CNN is used.

Chapter 5. Discussion and Conclusions 40

When evaluating the contrastive representations, I have avoided a direct comparison
between the two models (which is critical given their distributional difference), which
motivated the development of the PPIT showcased in subsection 4.2.2, a novel, un-
supervised way of evaluating different contrastive models. Nonetheless, these tasks
are just a proxy for selecting “good enough” models and, for example, don’t take into
account the quality of negative pairs found by the contrastive models (for example,
given a reference patch containing a building in a certain style/orientation, we should
expect a better model to find negative pairs which share these features, but currently this
information isn’t taken into account). The dowsntream classification tasks presented in
subsection 4.3.1 provided a simple way of analysing the difference in representations
learnt by the two models, but these could be further refined.

For example, through hand-labelling, an object classifier such as YOLO [40] can be
trained, to detect features such as trees, buildings or text. A classifier can then be
trained to determine which objects are present in a patch, based solely on the contrastive
representation, which would provide more concrete evidence on how these models
encode visual information. Furthermore, the contrastive representations could be
used to generate a canonical map patch in a given style; this could reveal which
features are encoded by contrastive representations, and would provide a framework
for homogenising different maps of the same region (as they’d all be converted into
the “same” map). I tried this using a UNet [41] to convert OS map representations into
both OSM and OS style maps, and found that simple shapes (such as roads) could be
successfully extracted from the representations (including a relatively correct orientation
and positioning). However, the model struggled with more complex features (such as
building shapes), so perhaps more complex systems (such as diffusion models [42])
could be used.

I was able to exploit the nature of our representations, in order to derive somewhat
meaningful conclusions from the clustering results. However, given the large number
of parameters that both UMAP and HDBSCAN allow, the results could be further refined
to reveal more information. This would be particularly relevant when using clustering
for map segmentation, whereby the segmentations weren’t always consistent, and they
were only meaningful for maps with many different sets of features. Nonetheless, this
could be an interesting route to further explore, particularly since segmenting these
historical maps in a completely unsupervised manner can be quite useful (for example,
exploring city development through time).

Bibliography

[1] Kasra Hosseini et al. MapReader: A Computer Vision Pipeline for the Semantic
Exploration of Maps at Scale. 2021. DOI: 10.48550/ARXIV.2111.15592. URL:
https://arxiv.org/abs/2111.15592.

[2] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). arXiv: 1512.03385. URL: http://arxiv.org/abs/
1512.03385.

[3] Zekun Li. “Generating Historical Maps from Online Maps”. In: Proceedings of
the 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. SIGSPATIAL ’19. Chicago, IL, USA: Association for
Computing Machinery, 2019, pp. 610–611. ISBN: 9781450369091. DOI: 10.
1145/3347146.3363463. URL: https://doi.org/10.1145/3347146.
3363463.

[4] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. 2017. DOI: 10.48550/ARXIV.1703.10593. URL: https:
//arxiv.org/abs/1703.10593.

[5] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
2017. URL: https://www.openstreetmap.org.

[6] Zekun Li et al. “An Automatic Approach for Generating Rich, Linked Geo-
Metadata from Historical Map Images”. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.
KDD ’20. Virtual Event, CA, USA: Association for Computing Machinery, 2020,
pp. 3290–3298. ISBN: 9781450379984. DOI: 10.1145/3394486.3403381. URL:
https://doi.org/10.1145/3394486.3403381.

[7] Ashish Jaiswal et al. “A Survey on Contrastive Self-Supervised Learning”. In:
Technologies 9.1 (2021). ISSN: 2227-7080. DOI: 10.3390/technologies9010002.
URL: https://www.mdpi.com/2227-7080/9/1/2.

[8] Lanling Xu et al. Negative Sampling for Contrastive Representation Learning: A
Review. 2022. arXiv: 2206.00212 [cs.IR].

[9] S. Chopra, R. Hadsell, and Y. LeCun. “Learning a similarity metric discrimina-
tively, with application to face verification”. In: 1 (2005), 539–546 vol. 1. DOI:
10.1109/CVPR.2005.202.

[10] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A unified
embedding for face recognition and clustering”. In: (June 2015). DOI: 10.1109/
cvpr.2015.7298682. URL: https://doi.org/10.1109%2Fcvpr.2015.
7298682.

41

https://doi.org/10.48550/ARXIV.2111.15592
https://arxiv.org/abs/2111.15592
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3347146.3363463
https://doi.org/10.1145/3347146.3363463
https://doi.org/10.1145/3347146.3363463
https://doi.org/10.1145/3347146.3363463
https://doi.org/10.48550/ARXIV.1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://www.openstreetmap.org
https://doi.org/10.1145/3394486.3403381
https://doi.org/10.1145/3394486.3403381
https://doi.org/10.3390/technologies9010002
https://www.mdpi.com/2227-7080/9/1/2
https://arxiv.org/abs/2206.00212
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682

BIBLIOGRAPHY 42

[11] Kihyuk Sohn. “Improved Deep Metric Learning with Multi-class N-pair Loss
Objective”. In: 29 (2016). Ed. by D. Lee et al. URL: https://proceedings.
neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-
Paper.pdf.

[12] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning
with Contrastive Predictive Coding. 2018. DOI: 10.48550/ARXIV.1807.03748.
URL: https://arxiv.org/abs/1807.03748.

[13] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual
Representations”. In: (2020). DOI: 10.48550/ARXIV.2002.05709. URL: https:
//arxiv.org/abs/2002.05709.

[14] Kaiming He et al. Momentum Contrast for Unsupervised Visual Representation
Learning. 2019. DOI: 10.48550/ARXIV.1911.05722. URL: https://arxiv.
org/abs/1911.05722.

[15] Jean-Bastien Grill et al. Bootstrap your own latent: A new approach to self-
supervised Learning. 2020. arXiv: 2006.07733 [cs.LG].

[16] Jia Deng et al. ImageNet: A large-scale hierarchical image database. 2009. DOI:
10.1109/CVPR.2009.5206848.

[17] Yuhao Zhang et al. Contrastive Learning of Medical Visual Representations
from Paired Images and Text. 2020. DOI: 10.48550/ARXIV.2010.00747. URL:
https://arxiv.org/abs/2010.00747.

[18] Yawen Wu et al. Distributed Contrastive Learning for Medical Image Segmenta-
tion. 2022. DOI: 10.48550/ARXIV.2208.03808. URL: https://arxiv.org/
abs/2208.03808.

[19] Shekoofeh Azizi et al. Big Self-Supervised Models Advance Medical Image
Classification. 2021. DOI: 10.48550/ARXIV.2101.05224. URL: https://
arxiv.org/abs/2101.05224.

[20] Krishna Chaitanya et al. Contrastive learning of global and local features for
medical image segmentation with limited annotations. 2020. DOI: 10.48550/
ARXIV.2006.10511. URL: https://arxiv.org/abs/2006.10511.

[21] Xu Xie et al. “Contrastive Learning for Sequential Recommendation”. In: 2022
IEEE 38th International Conference on Data Engineering (ICDE). 2022, pp. 1259–
1273. DOI: 10.1109/ICDE53745.2022.00099.

[22] Ishan Dave et al. “TCLR: Temporal contrastive learning for video representation”.
In: Computer Vision and Image Understanding 219 (2022), p. 103406. ISSN:
1077-3142. DOI: https://doi.org/10.1016/j.cviu.2022.103406. URL:
https://www.sciencedirect.com/science/article/pii/S1077314222000376.

[23] Patrick Helber et al. “Introducing Eurosat: A Novel Dataset and Deep Learning
Benchmark for Land Use and Land Cover Classification”. In: (2018), pp. 204–
207. DOI: 10.1109/IGARSS.2018.8519248.

[24] Yao-Yi Chiang et al. “Training Deep Learning Models for Geographic Feature
Recognition from Historical Maps”. In: Using Historical Maps in Scientific Stud-
ies: Applications, Challenges, and Best Practices. Cham: Springer International
Publishing, 2020, pp. 65–98. ISBN: 978-3-319-66908-3. DOI: 10.1007/978-3-
319-66908-3_4. URL: https://doi.org/10.1007/978-3-319-66908-3_4.

[25] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-
works. 2015. arXiv: 1511.08458 [cs.NE].

https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://doi.org/10.48550/ARXIV.1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.48550/ARXIV.2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://doi.org/10.48550/ARXIV.1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/2006.07733
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/ARXIV.2010.00747
https://arxiv.org/abs/2010.00747
https://doi.org/10.48550/ARXIV.2208.03808
https://arxiv.org/abs/2208.03808
https://arxiv.org/abs/2208.03808
https://doi.org/10.48550/ARXIV.2101.05224
https://arxiv.org/abs/2101.05224
https://arxiv.org/abs/2101.05224
https://doi.org/10.48550/ARXIV.2006.10511
https://doi.org/10.48550/ARXIV.2006.10511
https://arxiv.org/abs/2006.10511
https://doi.org/10.1109/ICDE53745.2022.00099
https://doi.org/https://doi.org/10.1016/j.cviu.2022.103406
https://www.sciencedirect.com/science/article/pii/S1077314222000376
https://doi.org/10.1109/IGARSS.2018.8519248
https://doi.org/10.1007/978-3-319-66908-3_4
https://doi.org/10.1007/978-3-319-66908-3_4
https://doi.org/10.1007/978-3-319-66908-3_4
https://arxiv.org/abs/1511.08458

BIBLIOGRAPHY 43

[26] Chitra Agastya et al. Self-supervised Contrastive Learning for Irrigation De-
tection in Satellite Imagery. 2021. DOI: 10.48550/ARXIV.2108.05484. URL:
https://arxiv.org/abs/2108.05484.

[27] Gencer Sumbul et al. “Bigearthnet: A Large-Scale Benchmark Archive for Re-
mote Sensing Image Understanding”. In: IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium. IEEE, July 2019. DOI:
10.1109/igarss.2019.8900532. URL: https://doi.org/10.1109%
2Figarss.2019.8900532.

[28] Kumar Ayush et al. Geography-Aware Self-Supervised Learning. 2020. DOI:
10.48550/ARXIV.2011.09980. URL: 8.

[29] Gordon Christie et al. Functional Map of the World. 2017. DOI: 10.48550/
ARXIV.1711.07846. URL: https://arxiv.org/abs/1711.07846.

[30] Kihyuk Sohn. Improved Deep Metric Learning with Multi-class N-pair Loss
Objective. Ed. by D. Lee et al. 2016. URL: https://proceedings.neurips.
cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

[31] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[32] National Library of Scotland. Discover the World in Maps. https://www.nls.
uk/collections/maps/. URL: https://www.nls.uk/collections/maps/.

[33] Ordnance Survey. Ordnance Survey: See a Better place. https://www.nls.uk/
collections/maps/. URL: https://www.ordnancesurvey.co.uk.

[34] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000). URL: https://opencv.org.

[35] Weiyuan Wu. dovahcrow/patchify. Mar. 2021. URL: https://github.com/
dovahcrow/patchify.py.

[36] John Canny. “A computational approach to edge detection”. In: IEEE Transac-
tions on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

[37] Leland McInnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density
based clustering”. In: The Journal of Open Source Software 2.11 (2017), p. 205.

[38] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[39] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. 2018. DOI: 10.48550/
ARXIV.1802.03426. URL: https://arxiv.org/abs/1802.03426.

[40] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. arXiv: 1506.02640 [cs.CV].

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[42] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic
Models. 2020. arXiv: 2006.11239 [cs.LG].

[43] Sean Gillies et al. Rasterio: geospatial raster I/O for Python programmers.
https : / / github . com / mapbox / rasterio. Mapbox, 2013. URL: https :
//github.com/mapbox/rasterio.

https://doi.org/10.48550/ARXIV.2108.05484
https://arxiv.org/abs/2108.05484
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109%2Figarss.2019.8900532
https://doi.org/10.1109%2Figarss.2019.8900532
https://doi.org/10.48550/ARXIV.2011.09980
8
https://doi.org/10.48550/ARXIV.1711.07846
https://doi.org/10.48550/ARXIV.1711.07846
https://arxiv.org/abs/1711.07846
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.nls.uk/collections/maps/
https://www.nls.uk/collections/maps/
https://www.nls.uk/collections/maps/
https://www.nls.uk/collections/maps/
https://www.nls.uk/collections/maps/
https://www.ordnancesurvey.co.uk
https://opencv.org
https://github.com/dovahcrow/patchify.py
https://github.com/dovahcrow/patchify.py
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.48550/ARXIV.1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2006.11239
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio

BIBLIOGRAPHY 44

[44] Alan D. Snow et al. pyproj4/pyproj: 3.0.1rc0. https://github.com/pyproj4/
pyproj. Version 3.0.1rc0. Mar. 2021. DOI: 10.5281/zenodo.4571637. URL:
https://doi.org/10.5281/zenodo.4571637.

[45] Sean Gillies et al. Shapely: manipulation and analysis of geometric objects.
toblerity.org, 2007. URL: https://github.com/shapely/shapely.

https://github.com/pyproj4/pyproj
https://github.com/pyproj4/pyproj
https://doi.org/10.5281/zenodo.4571637
https://doi.org/10.5281/zenodo.4571637
https://github.com/shapely/shapely

Appendix A

Additional Work

A.1 Aligning Maps of the Same Region from Georefer-
ence Information

A key aspect of this project is being able to automatically find whether 2 maps are meant
to represent the same region, as without this, no alignment is possible for positive patch
pairs. Thankfully, since I had the georeferenced maps, I could leverage the metadata of
the maps to automatically group together maps which corresponded to the same area.

Our first approach to this was to employ the metadata inherent in the original (unpro-
cessed) TIFF files. Amongst other things, this included the coordinate system for the
map and a bounding box for the map in those coordinates. Using the package rasterio
[43], the bounding box for the map could be extracted. Using pyproj [44], I then
converted the bounding box into longitudes and latitudes (the NLS used the British
National Grid system for encode coordinates), since these are easier to work with and
understand. I thought that using these coordinates, I could then group together the maps
which shared the same bounding box. However, upon discovering that no groups were
found, I decided to plot the bounding boxes using geojson.io:

45

geojson.io

Appendix A. Additional Work 46

Figure A.1: Bounding boxes for 4 maps of the same region. Image generated using
geojson.io (see B.1.2).

As one can see, the rotation observed in the maps seemed to affect the bounding boxes
stored as metadata. To mitigate this, I could have tried rotating the bounding boxes by the
angle used to rectify the original maps. However, this posed unnecessary complications,
and wasn’t likely to work: longitudes and latitudes correspond to coordinates on a
spherical surface, so applying an affine transformation wouldn’t lead to a perfect
bounding box alignment. Instead, I chose to use the shapely [45] package, which
allowed us to convert the bounding boxes into shapes. Critically, this package allows
me to compute the intersection area between 2 shapes. I used this intersection area
as a signal to determine if 2 maps represented the same region: for any 2 maps, I can
compute the intersection area between their bounding boxes; if this area corresponds
to a high proportion of the area of each of the bounding boxes, then the 2 maps are
likely to represent the same region. Using a threshold of 0.8 for the intersection area
proportion, I was able to quickly and efficiently group maps together.

Once I had access to the metadata from Table B.1, I was able to confirm that this method
found the exact same region alignments, which means tha tthis method could be used in
situations where such metadata might not be available.

A.2 Aligning Maps at the Patch Level

The last step in handling the maps was to, given 2 maps of the same region, be able
to generate pairs of patches which are aligned: that is, finding sets of patches which
correspond to the same area. Initially, I worked under the assumption that this would be
an additional pre-processing step, since the maps were of different shapes, and I were
told that during scanning, slight warping could have been introduced into the maps.
Our alignment algorithm was tested on the 4 OS maps corresponding to the region
portrayed in Figure 3.1. I felt that this was a fairly representative map, since it contained
a variety of interesting features, both from the city (buildings, roads, rail tracks) and
from the countryside (mountains, lakes, grasslands). For these tests, the 4 OS maps

geojson.io

Appendix A. Additional Work 47

were split into 2,301 64→64 patches, after applying the bilinear interpolator with kernel
4. Because of this, I already had a “rough” alignment.

Once I had a rough alignment, our alignment algorithm worked as follows. Say I have
2 maps: a reference map, and a query map. Our objective is that, for each i ↓ [1,2301],
I can shift each patch qi in the query map, such that it has the best possible alignment
with its corresponding patch ri in the reference map.

Figure A.2: I aim to, given this rough alignment of ri,qi, find the best possible way of
shifting qi, such that it is as aligned with ri as possible.

To define the best possible alignment, I considered a maximum number of vertical and
horizontal shifts, vshi f t ,hshi f t (for our experiments, I used vshi f t = hshi f t = 7). I then
padded the query and reference patches, using white pixels. Finally, I applied a binary,
adaptive threshold to qi,ri (which converts each pixel into either black or white), and
then iterated over all possible combinations (∋y,∋x) ↓ [↗vshi f t ,vshi f t]→ [↗hshi f t ,hshi f t].
For each (∋y,∋x), I shifted qi vertically by ∋y pixels, and horizontally by ∋x pixels (call
the result qshi f t

i), and then computed a pixel-wise XOR of qshi f t
i with ri. Summing this

then tells us the number of pixels in common between qshi f t
i and ri, which I use as our

alignment measure: the higher this value, the stronger the alignment.

Figure A.3: One way of visualising the misalignment between 2 patches is by using the
red channel of the reference, and the blue channel of the query. I can construct then
overlap them as a single image. Regions which appear red/blue in the overlapped image
correspond to misalignments. As can be seen, these 2 patches barely misalign. In fact,
our algorithm assigns optimal alignment by using ∋y =↗1 and ∋x = 0 (I just need to
shift the query patch one pixel down).

I can then apply this procedure over each roughly aligned patch between 2 maps (taking
care to instead of including the padding in qshi f t

i , to crop out the corresponding map
region). I can then visualise the misalignment between 2 maps, by counting the number
of times a given shift had to be used to obtain the best possible alignment:

Appendix A. Additional Work 48

Figure A.4: Heatmap showing the number of times a given alignment shift (∋y,∋x) was
used in our alignment algorithm, over all patches in 2 maps. The darker a region, the
more times a given shift was used. I can see that by far, most patches required no shift
at all, with the great majority of patches requiring at most 2 pixel shifts vertically and/or
horizontally.

Based on Figure A.2, it seemed reasonable to not use the alignment algorithm: most
patches were reasonably aligned, and the minor misalignments found shouldn’t impact
our contrastive models in any significant way (after all, CL involves applying trans-
formations to positive pairs, in order to learn more robust representations, so I were
getting these transformations directly from the data). Just in case, I decided to explore
which patches required large shifts in order to align them. I found that (broadly) these
were encompassed in 3 categories: largely empty patches (patches have some noise,
so darker regions will appear in different places for different empty patches), patches
containing words (since words tended to vary in positioning and size across the maps)
and patches containing symbols (since both symbol style and placement varied across
maps). Moreover, this method has a clear flaw, in that it relies on some degree of stylistic
similarity between the patches. Because of this, it wouldn’t be reliable if I wanted
to align a Bartholomew and OS patch, for instance. Moreover, computing so many
alignments over all the maps in our data would be extremely costly. Hence, I thought
that it wouldn’t be reasonable to continue pursuing the automatic alignment route, since
the rough alignments obtained by just applying patchify without overlapping patches
were good enough.

A.3 Aligning OS Maps with Bartholomew Maps

One of the capabilities of rasterio is that it can be used to recover the pixel cor-
responding to a given geographical coordinate from GeoTIFFs. Because of this, I
wanted to see whether it would be possible to extract the region of a Bartholomew map
corresponding to the region of some other OS map. Before, with the faulty metadata
inherent in the original TIFF files, this would have been pointless. However, now that I
had the metadata table, this was a bit more feasible. Naturally, the alignment wouldn’t
be perfect, since the Bartholomew metadata is also faulty.

Appendix A. Additional Work 49

Figure A.5: To the left, a Bartholomew map before being pre-processed. After pre-
processing, I crop out a region corresponding to the OS map showcased in Figure 3.1.
The result is shown to the right. Notice, comparing this with Figure 3.1, they seem very
similar, but the cropped out Bartholomew map is slightly larger. This is due to the fact
that the Bartholomew map had to be rotated and cropped. But without this, the cutoff
would have been rotated, and so, the alignment would be even worse.

Overall, this supports my decision to not work with Bartholomew maps. Firstly, they
have a high variability, even amongst themselves (compare Figure 3.1 with Figure A.5).
Secondly, as can be seen from Figure A.5, the borders of Bartholomew maps don’t form
a boundary with the padding. As such, our current pre-processing method doesn’t work
too well with Bartholomew maps, and a new technique would need to be developed
these borders. However, this is highly non-trivial, since the different Bartholomew maps
are inconsistent in their bordering (sometimes theres one border, other times there are
multiple parallel border lines). Thirdly, aligning them correctly with OS maps, in an
automatic and efficient manner would require a lot more effort and ingenuity. One way
of doing this could be identifying common landmarks between the two, but again, this
would be an arduous task which could constitute a project all by itself.

A.4 Modifying Representations Through Learning Task

Initially, I tried to enforce geographical awareness by defining a classification task:
given some patch p, and another patch r which appears in its context (that is, one of the
8 patches which will be immediately adjacent to p), can I predict the position of r, just
from their contrastive representations?

p

r

Predictor Top Right

To do this, I learnt 2 simple feedforward models. The first one encoded the latent
representations for p and r, which were then concatenated, and passed to thesecond
feedforward layer, which used a softmax activation to predict one of 8 classes (top
left, top, top right, left, right, bottom left, bottom or bottom right). However, I didn’t
obtain great results (around 60% validation and test accuracy), even after 100 epochs of
training. Moreover, after passing the contrastive embeddings through the network, the
resulting representations didn’t preserve the similarity features which made our original

Appendix A. Additional Work 50

representations desirable (for instance, a given patch still obtained a high similarity
score with a corresponding positive pair, but its similarity score with other completely
different patches also increased).

Appendix B

Maps and Metadata

B.1 GeoJSONs

B.1.1 GeoJSON Containing Full Map Region

1 {
2 "type": "FeatureCollection",
3 "features": [
4 {
5 "type": "Feature",
6 "geometry": {
7 "type": "Polygon",
8 "coordinates": [
9 [

10 [-3.38374788940603,
11 55.8715983250667
12],
13 [
14 -3.07422210721001,
15 55.8715983250667
16],
17 [
18 -3.07422210721001,
19 56.0020051346329
20],
21 [
22 -3.38374788940603,
23 56.0020051346329
24],
25 [
26 -3.38374788940603,
27 55.8715983250667
28]
29]
30]

51

Appendix B. Maps and Metadata 52

31 },
32 "properties": {
33 "stroke": "#ff0000",
34 "fill" : "none",
35 "fill-opacity" : 0
36 }
37 }
38]
39 }

B.1.2 GeoJSON of Overlapping Bounding Boxes

1 {
2 "type": "FeatureCollection",
3 "features": [
4 {
5 "type": "Feature",
6 "geometry": {
7 "type": "GeometryCollection",
8 "geometries": [
9 {

10 "type": "Polygon",
11 "coordinates": [
12 [
13 [
14 -3.192112616595414,
15 55.9423625178286
16],
17 [
18 -3.149118538110902,
19 55.94277108265303
20],
21 [
22 -3.149638014166486,
23 55.96030038664902
24],
25 [
26 -3.192651513330189,
27 55.95989155384999
28],
29 [
30 -3.192112616595414,
31 55.9423625178286
32]
33]
34]
35 },
36 {

Appendix B. Maps and Metadata 53

37 "type": "Polygon",
38 "coordinates": [
39 [
40 [
41 -3.1916248563612144,
42 55.94244979270547
43],
44 [
45 -3.1486045560362697,
46 55.94285843127807
47],
48 [
49 -3.149112581883714,
50 55.960009178369596
51],
52 [
53 -3.1921518949151615,
54 55.959600277564434
55],
56 [
57 -3.1916248563612144,
58 55.94244979270547
59]
60]
61]
62 },
63 {
64 "type": "Polygon",
65 "coordinates": [
66 [
67 [
68 -3.1922529047804167,
69 55.942420425296774
70],
71 [
72 -3.1494971017459723,
73 55.942826815554305
74],
75 [
76 -3.1499948839664507,
77 55.95961890427993
78],
79 [
80 -3.192769187420956,
81 55.959212258688744
82],
83 [
84 -3.1922529047804167,
85 55.942420425296774

Appendix B. Maps and Metadata 54

86]
87]
88]
89 },
90 {
91 "type": "Polygon",
92 "coordinates": [
93 [
94 [
95 -3.1920101891085304,
96 55.942429550011795
97],
98 [
99 -3.149129078602052,

100 55.942837024945554
101],
102 [
103 -3.149651211538686,
104 55.96045572776686
105],
106 [
107 -3.1925517905857155,
108 55.96004798420948
109],
110 [
111 -3.1920101891085304,
112 55.942429550011795
113]
114]
115]
116 }
117]
118 },
119 "properties": {
120 "stroke": "#ff0000",
121 "fill" : "none",
122 "fill-opacity" : 0
123 }
124 }
125]
126 }

B.2 Code for Rotating and Cropping the Badly Scanned
Maps

This code assumes that the image is horizontal, and that the padding is white. This
function was developed by adapting:

Appendix B. Maps and Metadata 55

• How to rotate skewed fingerprint image to vertical upright position [closed]

• How to remove whitespace from an image in OpenCV?

import numpy as np
import cv2 as cv

def rotate_crop_map(map_img):
gray = cv.cvtColor(map_img, cv.COLOR_RGB2GRAY)
gray = 255 - gray
thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)

[1]

Compute rotated bounding box
coords = np.column_stack(np.where(thresh > 0))
center_rect, dims, angle = cv.minAreaRect(coords)

if angle < -45:
angle = -angle

else:
angle = 90-angle

print(angle)

Rotate image to deskew
(h, w) = map_img.shape[:2]
center = (w // 2, h // 2)
M = cv.getRotationMatrix2D(center, angle, 1.0)
rotated = cv.warpAffine(map_img, M, (w, h), flags=cv.INTER_CUBIC,

borderMode=cv.BORDER_REPLICATE)

gray = cv.cvtColor(rotated, cv.COLOR_BGR2GRAY)
gray = 255*(gray < 128).astype(np.uint8) # To invert the text to white
coords = cv.findNonZero(gray) # Find all non-zero points (text)
x, y, w, h = cv.boundingRect(coords) # Find minimum spanning bounding

box
rect = rotated[y:y+h, x:x+w]
rect = cv.cvtColor(rect, cv.COLOR_BGR2RGB)

return rect

https://stackoverflow.com/questions/57713358/how-to-rotate-skewed-fingerprint-image-to-vertical-upright-position
https://stackoverflow.com/questions/49907382/how-to-remove-whitespace-from-an-image-in-opencv

Appendix B. Maps and Metadata 56

B.3 Metadata Table Columns
Table B.1: Description of the metadata table provided by the NLS. The original table has
more columns, but they contained redundant information (i.e same information as other
columns). I thus only list the key columns of the metadata table.

Column Name Type of Data

WKT Bounding boxes in Well-Known Text for-
mat. Coordinates are stored as longitudes
and latitudes.

SERIES The type of map. For example: Scotland
- 25 Inch 2nd and Later Editions.

COUNTY The country represented in the map. All
these maps corresponded to Edinburghshire.

SHEET NO The sheet number for the map. This helps
identify the geographical area covered by
the map. These are of the form 007 05, and
there were 57 such unique numbers.

EDITION The edition of the map. All the maps were
a second, third, fourth or fifth edition.

IMAGEURL A URL to visualise the map in the NLS
website. For instance: https://maps.nls.
uk/view/82877892.

YEAR The year in which the map was published.
As discussed, these range from 1894 to
1947.

B.4 Code for Removing Uninformative Patches

The method for removing patches with uninformative features was part of the CLPatchDataset
class, which is the class I used to store the patch dataset for the contrastive algorithms.

import numpy as np
import cv2 as cv
from torch.utils.data import Dataset

class CLPatchDataset(Dataset):

...

@staticmethod
def count_black_pixels(edges):

black_pixel_idx = np.where(edges == 255)
return len(black_pixel_idx[0])

https://maps.nls.uk/view/82877892
https://maps.nls.uk/view/82877892

Appendix B. Maps and Metadata 57

@staticmethod
def get_edges(patch):

gray = cv.cvtColor(np.array(patch), cv.COLOR_RGB2GRAY)
gray = cv.GaussianBlur(gray, (3, 3), 0)
return cv.Canny(gray, 50, 150)

@staticmethod
def is_empty_patch(patch):

edges = CLPatchDataset.get_edges(patch)
patch_width = patch.shape[0]

n_black_pixels = CLPatchDataset.count_black_pixels(edges)

min_black_pixels = int(0.01 * patch_width * patch_width)
edge_pixel_range = int(0.1 * patch_width)
max_edge_pixels = int(0.5 * n_black_pixels)

if n_black_pixels <= min_black_pixels:
return True

else:
for row in range(edge_pixel_range):

if CLPatchDataset.count_black_pixels(edges[row, :]) >=
max_edge_pixels \

or CLPatchDataset.count_black_pixels(edges[len(edges
) - 1 - row, :]) >= max_edge_pixels \

or CLPatchDataset.count_black_pixels(edges[:, row])
>= max_edge_pixels \

or CLPatchDataset.count_black_pixels(edges[:, len(
edges) - 1 - row]) >= max_edge_pixels:

return True

return False

Appendix C

Experimental Results

C.1 Estimate for Runtime

We used the set of hypterparameter choices which we used for running our experiments:

• encoder ↓ {ResNet18, ResNet34}

• pretrain ↓ {True,False}

• ! ↓ {0.80,0.90,0.95,0.99}

• & ↓ {1→10↗3,1→10↗2}

• batch size ↓ {32,64}

• patch size ↓ {128,224}

Based on preliminary experiments, we obtained a lenient estimate of 12 hours to run
5 epochs (including evaluating the model 100 times per epoch on the validation set),
this would amount to around 64 days of training, for each of the contrastive models.
Typically, BYOL took much longer to train than SimCLR, and the estimate of around 12
hours is the approximate runtime we observed for SimCLR experiments.

C.2 All Experiments Run

Note, for the experiments using 224→224 patches, our dataset changed. In particular, I
obtained 24,093 training positive pairs, 2,938 validation positive pairs and 2,886 testing
positive pairs. Notice, due to the patch size, certain maps weren’t included in this
dataset, since upon splitting them into corresponding patches, some regions contained
maps with a different number of patches. Said regions weren’t included in the final
dataset.

58

Appendix C. Experimental Results 59

Table C.1: Set of all experiments run.

Architecture Encoder Pretrained ! Learning Rate Patch Size Batch Size

BYOL ResNet18 ✁ 0.99 1→10↗3 128→128 64

BYOL ResNet18 ✁ 0.99 1→10↗2 128→128 64

BYOL ResNet18 ✁ 0.99 1→10↗3 128→128 32

BYOL ResNet34 ✁ 0.99 1→10↗3 128→128 64

BYOL ResNet18 ✂ 0.99 1→10↗3 128→128 64

BYOL ResNet18 ✁ 0.99 1→10↗3 224→224 64

BYOL CNN ✂ 0.99 1→10↗3 128→128 64

BYOL ResNet18 ✁ 0.95 1→10↗3 128→128 64

BYOL ResNet18 ✁ 0.90 1→10↗3 128→128 64

BYOL ResNet18 ✁ 0.80 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.99 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.99 1→10↗2 128→128 64

SimCLR ResNet18 ✁ 0.99 1→10↗3 128→128 32

SimCLR ResNet34 ✁ 0.99 1→10↗3 128→128 64

SimCLR ResNet18 ✂ 0.99 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.99 1→10↗3 224→224 64

SimCLR CNN ✂ 0.99 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.95 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.90 1→10↗3 128→128 64

SimCLR ResNet18 ✁ 0.80 1→10↗3 128→128 64

C.3 Losses for Experiments

C.3.1 BYOL
Table C.2: BYOL training and validation loss during experimental runs.

Model Total Training
Time

Full Epochs
Completed

Best Training
Loss

Best Validation
Loss

BYOL (Base) 23.055 5 0.042 0.227

BYOL (! = 0.95) 26.673 5 0.039 0.209

BYOL (! = 0.90) 18.157 4 0.056 0.206

BYOL (! = 0.80) 18.473 4 0.057 0.214

BYOL (Not Pretrained) 23.061 5 0.059 0.252

BYOL (ResNet34) 22.479 3 0.084 0.237

BYOL (CNN) 8.169 5 0.070 0.287

BYOL (Patch Size 224) 7.409 5 0.034 0.240

BYOL (Batch Size 32) 36.925 8 0.001 0.028

BYOL (& = 1→10↗2) 9.325 2 0.079 0.154

Appendix C. Experimental Results 60

C.3.2 SimCLR
Table C.3: SimCLR training and validation loss during experimental runs. Notice, we
expect a lower loss for models using ! < 0.99, since a smaller ! will lead to a smaller
loss, everything else equal.

Model Total Training
Time (Hours)

Full Epochs
Completed

Best Training
Loss

Best Validation
Loss

SimCLR (Base) 14.910 5 3.871 4.143

SimCLR (! = 0.95) 15.012 5 3.828 4.115

SimCLR (! = 0.90) 13.382 5 3.776 4.081

SimCLR (! = 0.80) 13.237 5 3.647 3.995

SimCLR (Not Pretrained) 14.509 5 3.877 4.150

SimCLR (ResNet34) 12.938 3 3.882 4.148

SimCLR (CNN) 5.260 5 3.877 4.159

SimCLR (Patch Size 224) 4.776 5 3.066 4.089

SimCLR (Batch Size 32) 13.873 5 3.164 3.541

SimCLR (& = 1→10↗2) 13.489 5 3.884 4.139

C.4 Results for Experiments Run Longer

C.4.1 Training Results
Table C.4: SimCLR training and validation loss during experimental runs, when run for 15
epochs without early stopping.

Model Total Training
Time (Hours)

Full Epochs
Completed

Best Training
Loss

Best Validation
Loss

SimCLR (! = 0.80) 39.97 15 3.617 3.974

SimCLR (Not Pretrained) 40.42 15 3.855 4.135

C.4.2 PPIT Results
Table C.5: Comparing the best SimCLR model from the original runs with the second
best models after 15 epochs of training (instead of early stopping).

Model Top-1
Accuracy

Top-5
Accuracy

Top-10
Accuracy

Positive Pair
Accuracy

Early Stopping
SimCLR (! = 0.80) 0.22547 0.75158 0.80010 0.73515

SimCLR (Not Pretrained) 0.22615 0.75790 0.79922 0.74210

SimCLR (CNN) 0.22654 0.76305 0.80272 0.74905

15 Epochs
SimCLR (! = 0.80) 0.22372 0.75372 0.79951 0.73787

SimCLR (Not Pretrained) 0.22761 0.75897 0.80165 0.74336

C.5 Deriving Automatic Thresholds for Information Aware-
ness

Appendix C. Experimental Results 61

import numpy as np

def get_class_thresholds(pixel_counts):
thresholds = []
prev_min = 0

for partition in pixel_counts:
thresh = np.max(partition)

if thresh > prev_min:
thresholds.append(thresh)

else:
thresholds.append(np.min(partition[partition > thresh]))

return thresholds

pixel_counts is a list
pixel_counts[i] contains the number of edge pixels
in the ith patch from a dataset

split pixel_counts after sorting
split_pixel_counts = np.array_split(np.sort(pixel_counts), n_classes)

get the thresholds for the different classes
class_thresholds = get_class_thresholds(split_pixel_counts)

generate the class labels for the task
digitize: "Return the indices of the bins
to which each value in input array belongs."
the input array is pixel_counts, whilst the bins are class_thresholds
labels = np.digitize(pixel_counts, class_thresholds, right=True)

C.6 Transformations Applied

C.6.1 Rotation (30°)

The use of a 30°rotation angle was arbitrary, and was simply chosen since we thought it
would significanlty distort the meaning of a patch.

import torchvision.transforms as T

CROP_WIDTH = 64
IMG_WIDTH = 128

ROTATION_30_TRANSFORM = T.RandomRotation(
degrees = [ROTATION_ANGLE, ROTATION_ANGLE],

fill = 1)

Appendix C. Experimental Results 62

C.6.2 Horizontal Flip

import torchvision.transforms as T

H_FLIP_PROBABILITY = 1

HORIZONTAL_FLIP_TRANSFORM = T.RandomHorizontalFlip(p = H_FLIP_PROBABILITY)

C.6.3 Random Rotation (90°, 180°, 270°)

The set of rotation angles were selected in agreement with what was used in the original
SimCLR paper.

import torchvision.transforms as T
import numpy as np

ROTATION_RANGE = np.arange(90,360 + 90,90)

def ROTATION_RANDOM_TRANSFORM(img):
angle = np.random.choice(ROTATION_RANGE)
return T.RandomRotation(degrees = [angle, angle], fill = 1)(img)

C.6.4 Random Crop (64→64)

We chose a random crop of size 64→ 64, whilst in the original papers, they apply a
random crop size (ranging from 0.08 and 1.00 in terms of proportion).

import torchvision.transforms as T

CROP_WIDTH = 64
IMG_WIDTH = 128

CROP_RESIZE_CENTRE_TRANSFORM = T.Compose([
T.RandomCrop(CROP_WIDTH),
T.Resize(IMG_WIDTH)

])

C.6.5 Centre Crop (64→64)

import torchvision.transforms as T

CROP_WIDTH = 64
IMG_WIDTH = 128

CROP_RESIZE_CENTRE_TRANSFORM = T.Compose([
T.CenterCrop(CROP_WIDTH),

Appendix C. Experimental Results 63

T.Resize(IMG_WIDTH)
])

C.6.6 Gaussian Blur

In the SimCLR paper, they randomly sample % ↓ [0.1,2.0], and the kernel size is set to
10% of the image width/height. In our case, we picked a fixed % = 1; since we had
128→128 patches, we used a kernel sie of 13→13.

import torchvision.transforms as T

BLUR_KERNEL_SIZE = 13
BLUR_SIGMA = 1

GAUSSIAN_BLUR_TRANSFORM = T.GaussianBlur(
kernel_size = BLUR_KERNEL_SIZE,
sigma = BLUR_SIGMA)

C.6.7 Colour Jittering

The colour jittering implementation is in accordance with the SimCLR, where they define
a jitter strength. The choice of 0.5 as a jitter strength was arbitrary.

import torchvision.transforms as T

JITTER_STRENGTH = 0.5

COLOUR_JITTER_TRANSFORM = T.ColorJitter(0.8 * JITTER_STRENGTH,
0.8 * JITTER_STRENGTH,
0.8 * JITTER_STRENGTH,
0.2 * JITTER_STRENGTH)

C.6.8 Grayscaling

import torchvision.transforms as T

GRAYSCALE_PROBABILITY = 1

GRAYSCALE_TRANSFORM = T.RandomGrayscale(p = GRAYSCALE_PROBABILITY)

C.7 Clustering Results

C.7.1 Settings for UMAP

Appendix C. Experimental Results 64

from umap import UMAP

UMAP(verbose = True,
n_jobs = -1,
metric = "cosine",
n_neighbors = 23,
n_components = 100 #2,3,5,10,15,
densmap = False,
random_state = 23,
negative_sample_rate = 10,
low_memory = False,
min_dist = 0)

C.7.2 Settings for HDBSCAN

from hdbscan import HDBSCAN

HDBSCAN(min_cluster_size = 23,
min_samples = 13,
metric = "minkowski",
core_dist_n_jobs = -1,
prediction_data = True,
cluster_selection_epsilon = 0,
cluster_selection_method = "eom",
p = 2)

Appendix C. Experimental Results 65

C.7.3 Clustering on Validation Data
Table C.6: Number of clusters and percentage of outliers for different dimensionality
reduction techniques and contrastive models.

Dimensionality
Reduction Features Model Clusters Outliers Percentage of

Outliers

UMAP 15 Best SimCLR 40 516 9.32%

UMAP 15 Best BYOL 52 497 8.97%

UMAP 15 GeoSimCLR 45 701 12.66%

UMAP 100 Best SimCLR 48 693 12.51%

UMAP 100 Best BYOL 62 732 13.22%

UMAP 100 GeoSimCLR 46 756 13.65%

PCA 15 Best SimCLR 5 2,596 46.88%

PCA 15 Best BYOL 17 4,190 75.66%

PCA 15 GeoSimCLR 7 3,194 57.67%

PCA 100 Best SimCLR 5 2,889 52.17%

PCA 100 Best BYOL 19 4,324 78.01%

PCA 100 GeoSimCLR 5 2,453 44.29%

C.7.4 Cluster Similarities Using 100 Features
Cluster Similarity Model Similarity Percentile

Dimension
Reducer Model Mean Median Outlier 95th 99th 99.9th

UMAP 100
Best SimCLR

0.63649 0.62903 0.24381
0.50193 0.69975 0.90003

PCA 100 0.67573 0.66517 0.23644

UMAP 100
Best BYOL

0.90576 0.91141 0.70625
0.87729 0.95171 0.99755

PCA 100 0.94897 0.96135 0.66050

UMAP 100
GeoSimCLR

0.71886 0.69242 0.35816
0.72689 0.85462 0.93467

PCA 100 0.60515 0.62288 0.26928

Appendix C. Experimental Results 66

C.7.5 Cluster Examples

C.7.5.1 BYOL Clusters

Figure C.1: UMAP (15 features) on BYOL representations.

Figure C.2: UMAP (15 features) on BYOL representations.

Appendix C. Experimental Results 67

Figure C.3: PCA (15 features) on BYOL representations.

Figure C.4: PCA (15 features) on BYOL representations.

Appendix C. Experimental Results 68

Figure C.5: PCA (15 features) on BYOL representations.

C.7.5.2 SimCLR Clusters

Figure C.6: UMAP (15 features) on SimCLR representations.

Appendix C. Experimental Results 69

Figure C.7: UMAP (15 features) on SimCLR representations.

Figure C.8: PCA (15 features) on SimCLR representations.

Appendix C. Experimental Results 70

Figure C.9: PCA (15 features) on SimCLR representations.

C.7.5.3 GeoSimCLR Clusters

Figure C.10: UMAP (15 features) on GeoSimCLR representations.

Appendix C. Experimental Results 71

Figure C.11: UMAP (15 features) on GeoSimCLR representations.

Figure C.12: UMAP (15 features) on GeoSimCLR representations.

C.7.6 Score Distributions for All Clusters

C.7.6.1 Cluster Similarity Statistics

To do this, for each cluster, I compute the average similarity amongst patches in the
cluster, and then consider the average and median of these values across all clusters.
This then gives us a numerical measure of how good the clusters are at encompassing
similar patches. To see whether the similarity is due to the aptness of the clusters, I have
compared these similarities with simple baselines, such as an nth percentile similarity
score for a given contrastive method, or the similarity score for the outlier cluster. In

Appendix C. Experimental Results 72

particular, for each model, I can compute the set of all unique similarity scores between
each patch Pi ↓ P,Q j ↓ Q; using these I can then easily compute nth percentiles. I chose
the 95th, 99th and 99.9th percentiles, since I found that all of our data fit in between
these bins. I have also visualised the distribution of scores within a cluster, and compare
these with the distributions showcased in Figure 4.3.
Table C.7: Cluster similarity results, after reducing contrastive representations to 15
dimensions, and clustering with HDBSCAN.

Dim. Reducer Model
Cluster Similarity Model Similarity Percentile

Mean Median Outlier 95th 99th 99.9th

UMAP 15
Best SimCLR

0.63246 0.64370 0.28298
0.50193 0.69975 0.90003

PCA 15 0.62638 0.73072 0.24650

UMAP 15
Best BYOL

0.89492 0.90474 0.69894
0.87729 0.95171 0.99755

PCA 15 0.94131 0.95836 0.66047

UMAP 15
GeoSimCLR

0.72217 0.71604 0.35030
0.72689 0.85462 0.93467

PCA 15 0.64038 0.67589 0.27531

The above results show that the clusters are, in general, encompassing the notion of
similar patches (at least from the point of view of the contrastive model), with the mean
cluster similarity always falling well above the 95th percentile of similarity scores, and
the median cluster similarity sometimes going above the 99th percentile.

C.7.6.2 Cluster Distributions (100 features)

We can compute the similarity score for each cluster, for each model. We then plot
these scores as a histogram, where the y-axis corresponds to the proportion (that is,
what proportion of all similarity scores does a bin correspond to), whilst the x-axis
corresponds to the similarity scores of the cluster.

Appendix C. Experimental Results 73

C.7.7 Clusters for Regions from GeoSimCLR Representations

(a) Clusters for region 8, using UMAP and K-Means with K = 4.

(b) Clusters for region 8, using PCA and HDBSCAN.

(c) Clusters for region 8, using PCA and K-Means with K = 4.

Figure C.13: Clusters for region 8, using different dimensionality reduction and clustering
techniques. From left to right, I cluster the full geo-contrastive representation, the visual
representation and the contextual representation.

Appendix C. Experimental Results 74

(a) Clusters for region 17, using UMAP and K-Means with K = 4.

(b) Clusters for region 17, using PCA and HDBSCAN.

(c) Clusters for region 17, using PCA and K-Means with K = 4.

Figure C.14: Clusters for region 17, using different dimensionality reduction and cluster-
ing techniques. From left to right, I cluster the full geo-contrastive representation, the
visual representation and the contextual representation.

Appendix C. Experimental Results 75

(a) Clusters for region 52, using UMAP and K-Means with K = 3.

(b) Clusters for region 52, using PCA and HDBSCAN.

(c) Clusters for region 52, using PCA and K-Means with K = 3.

Figure C.15: Clusters for region 52, using different dimensionality reduction and cluster-
ing techniques. From left to right, I cluster the full geo-contrastive representation, the
visual representation and the contextual representation.

Appendix C. Experimental Results 76

C.7.8 Similarity Score Matrices for Region Patches from GeoSimCLR
Representations

(a) Similarity scores for patches in region 8.

(b) Similarity scores for patches in region 17.

(c) Similarity scores for patches in region 52.

Figure C.16: Similarity score matrices for different regions (using the same patches as
positive pairs of each other). From left to right, I use the full geo-contrastive representa-
tion, the visual representation and the contextual representation.

Appendix C. Experimental Results 77

C.7.9 Map Segmentation Through Clustering

C.7.9.1 HDBSCAN

(a) Segmentation for 82877409.tiff.

(b) Segmentation for 82877412.tiff.

(c) Segmentation for 82877415.tiff.

(d) Segmentation for 82877418.tiff.

Figure C.17: Maps were segmented by using HDBSCAN directly on the contrastive
representations. From left to right, the representations used were the best SimCLR, the
best BYOL and GeoSimCLR.

Appendix C. Experimental Results 78

C.7.9.2 UMAP + HDBSCAN

(a) Segmentation for 82877409.tiff.

(b) Segmentation for 82877412.tiff.

(c) Segmentation for 82877415.tiff.

(d) Segmentation for 82877418.tiff.

Figure C.18: Maps were segmented by using UMAP for dimensionality reduction of the
contrastive representations, followed by HDBSCAN for clustering. From left to right, the
representations used were the best SimCLR, the best BYOL and GeoSimCLR.

Appendix C. Experimental Results 79

C.7.9.3 UMAP + KMeans

(a) Segmentation for 82877409.tiff.

(b) Segmentation for 82877412.tiff.

(c) Segmentation for 82877415.tiff.

(d) Segmentation for 82877418.tiff.

Figure C.19: Maps were segmented by using UMAP for dimensionality reduction of the
contrastive representations, followed by KMeans for clustering, with K = 4. From left to
right, the representations used were the best SimCLR, the best BYOL and GeoSimCLR.

Appendix D

Understanding Similarity Distributions

D.1 Similarity Score Distributions

D.1.1 BYOL

D.1.1.1 BYOL (Base)

D.1.1.2 BYOL (! = 0.95)

80

Appendix D. Understanding Similarity Distributions 81

D.1.1.3 BYOL (! = 0.80)

D.1.1.4 BYOL (Not Pretrained)

D.1.1.5 BYOL (ResNet34)

Appendix D. Understanding Similarity Distributions 82

D.1.1.6 BYOL (CNN)

D.1.1.7 BYOL (Patch Size 224)

D.1.1.8 BYOL (Batch Size 32)

Appendix D. Understanding Similarity Distributions 83

D.1.1.9 BYOL (& = 1→10↗2)

D.1.2 SimCLR

D.1.2.1 SimCLR (Base)

D.1.2.2 SimCLR (! = 0.95)

Appendix D. Understanding Similarity Distributions 84

D.1.2.3 SimCLR (! = 0.90)

D.1.2.4 SimCLR (! = 0.80)

D.1.2.5 SimCLR (Not Pretrained)

Appendix D. Understanding Similarity Distributions 85

D.1.2.6 SimCLR (ResNet34)

D.1.2.7 SimCLR (Patch Size 224)

D.1.2.8 SimCLR (Batch Size 32)

Appendix D. Understanding Similarity Distributions 86

D.1.2.9 SimCLR (& = 1→10↗2)

D.1.3 Weighted GeoSimCLR

D.1.3.1 Visual Weight = 0.7

D.1.3.2 Visual Weight = 0.9

Appendix D. Understanding Similarity Distributions 87

D.2 Most Similar Patches

D.2.1 SimCLR and BYOL

Figure D.1: Both SimCLR and BYOL easily find the correct positive pairs. Notice how the
patch that they find most similar is a lot more stylistically similar to the reference patch.
This is particularly noticeable with the SimCLR model, where the differenc ein similarity
score between the first and second most similar patches is quite substantial. This
example also showcases the differences in the representations learnt by both models.
SimCLR is a lot more accurate in the sense that it finds road-like structures, in a correct
location and orientation within the patch. On the other hand, BYOL finds patches which
contain rail-like structures. Also, notice how both models find positive pairs

Appendix D. Understanding Similarity Distributions 88

Figure D.2: This example showcases how our positive pair creation process could be
refined, since the second positive pair seems to have very little to do with the reference
patch (this doesn’t mean they don’t represent the same region, this is likely due to
the year differences). Nonetheless, both SimCLR and BYOL are capable of identifying
suitable positive pairs. SimCLR is capable of correctly identifying the first positive pair,
and with much higher similarity score than the other most similar patches, which all
score very similarly. On the other, the more semantic representativity of BYOL means
that it just finds patches containing a line with the correct positioning and orientation,
and all such lines obtain a nearly identical similarity score.

Appendix D. Understanding Similarity Distributions 89

Figure D.3: Again, both models correctly identify the true positive pairs correctly, and
there is a drastic decrease in similarity score for the remaining patches. Again, SimCLR
finds patches which aren’t too related to the reference (except perhaps for the locationa
nd direction of a main road). On the other hand, BYOL seems to have been able to
identify the notion of a cross roads, alongside the dotted line patterns which are present
in the positive pairs.

Appendix D. Understanding Similarity Distributions 90

Figure D.4: This exemplifies the impressive ability that these models have of understand-
ing the information contained within the patches. Given that these are validation patches,
the model has never seen any such patches. I f I look at the reference and the positive
pairs, I struggled to see how these could constitute positive pairs, particularly given the
reference. The only thing that they seem to have in common is a stripe pattern, alongside
a general direction. Both models seems to be able to pick up on this, particularly SimCLR,
which impressively is capable of finding a correct positive pair. BYOL seems to struggle
a lot more with this task, as it seems to identify a mixture of rail tracks and plain roads,
both features present within the reference patch.

Appendix D. Understanding Similarity Distributions 91

Figure D.5: In this example, it is quite noticeable the effect that the band of black and
yellow has on decreasing the similarity score for the positive patch pairs. Moreover, it
is qutie significant to see how beyond the positive pairs, SimCLR seems to ignore the
presence of the rail track, instead focusing on the presence of buildings with a road
in between. On the other hand, BYOL does pick up on both the railtracks, but also the
presence of lateral roads at either side of the tracks.

Figure D.6: These examples showcases 2 key aspects. Firstly, the positional awareness
of the representations: both models understand that the text is situated in the upper
right corner of the patch. Secondly, BYOL is a lot more optimistic, assigning a similarity
score above 0.999 for all patches, whilst SimCLR seems to be a lot more conservative,
perhaps in understanding the difference between numbers and text.

Appendix D. Understanding Similarity Distributions 92

Appendix D. Understanding Similarity Distributions 93

Appendix D. Understanding Similarity Distributions 94

Appendix D. Understanding Similarity Distributions 95

Figure D.7: Given the specificity and uniqueness of the reference patch, we’d expect taht
the true positive pairs should be fairly easy to find. What is most interesting is that for
both models, the third most similar patch conserves information and shape relative to
the reference (the fact that there are trees, and the general shapes that appear in the
patches are fairly similar). However, the fourther and fifth most similar patches seem to
be fairly unrelated, particularly for SiMCLR (with BYOL at least there is a notion of trees
around black lines).

Appendix D. Understanding Similarity Distributions 96

Figure D.8: Here I showcase how BYOL seems to better understand the combination
of features present within the reference (empty space + sparse trees in an enclosure).
Once again, both models find the correct positive paris, and there is a marked difference
between these and the other patches found.

Appendix D. Understanding Similarity Distributions 97

D.2.2 GeoSimCLR

D.2.2.1 Weight = 0.7

Appendix D. Understanding Similarity Distributions 98

Appendix D. Understanding Similarity Distributions 99

D.2.2.2 Weight = 0.9

Appendix D. Understanding Similarity Distributions 100

Appendix D. Understanding Similarity Distributions 101

Appendix D. Understanding Similarity Distributions 102

Appendix D. Understanding Similarity Distributions 103

Appendix D. Understanding Similarity Distributions 104

	Background
	Motivation
	Related Work
	Deep Learning and Maps
	Contrastive Learning
	Contrastive Learning for Geographical Tasks

	Goal and Contributions
	Report Structure

	Model Architectures
	Contrastive Learning
	Models for this Project
	SimCLR
	BYOL
	Project Models

	Data
	Obtaining Historical Maps
	Generating Data for Training
	Preprocessing the Maps
	Finding Maps of the Same Region
	From Maps to Patches
	Generating Datasets from Maps
	Splitting the Dataset
	Using Larger Patches

	Methodology and Results
	Training the Models
	Hyperparameters
	Training Procedure

	Positive Pair Identification Tasks
	Problem Setup
	Tasks Considered
	Results
	Applicability of Results
	Visualising Similarity Scores

	Exploring Encoded Features
	Classification Tasks
	Invariance Under Transformations

	Geographical Awareness
	Geographically-Aware Representations
	Clustering

	Discussion and Conclusions
	Main Conclusions
	Future Work

	Additional Work
	Aligning Maps of the Same Region from Georeference Information
	Aligning Maps at the Patch Level
	Aligning OS Maps with Bartholomew Maps
	Modifying Representations Through Learning Task

	Maps and Metadata
	GeoJSONs
	GeoJSON Containing Full Map Region
	GeoJSON of Overlapping Bounding Boxes

	Code for Rotating and Cropping the Badly Scanned Maps
	Metadata Table Columns
	Code for Removing Uninformative Patches

	Experimental Results
	Estimate for Runtime
	All Experiments Run
	Losses for Experiments
	BYOL
	SimCLR

	Results for Experiments Run Longer
	Training Results
	PPIT Results

	Deriving Automatic Thresholds for Information Awareness
	Transformations Applied
	Rotation (30°)
	Horizontal Flip
	Random Rotation (90°, 180°, 270°)
	Random Crop (64 64)
	Centre Crop (64 64)
	Gaussian Blur
	Colour Jittering
	Grayscaling

	Clustering Results
	Settings for UMAP
	Settings for HDBSCAN
	Clustering on Validation Data
	Cluster Similarities Using 100 Features
	Cluster Examples
	Score Distributions for All Clusters
	Clusters for Regions from GeoSimCLR Representations
	Similarity Score Matrices for Region Patches from GeoSimCLR Representations
	Map Segmentation Through Clustering

	Understanding Similarity Distributions
	Similarity Score Distributions
	BYOL
	SimCLR
	Weighted GeoSimCLR

	Most Similar Patches
	SimCLR and BYOL
	GeoSimCLR

